مطالعه عددی عوامل موثر ناشی از وصله کامپوزیتی بر افزایش عملکرد استوانه حاوی ترک نیم‌بیضوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار، مجتمع دانشگاهی هوافضا، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران غرب، تهران، ایران

چکیده

در این مقاله تأثیر وصله کامپوزیتی برای ترمیم لوله‌ی استوانه‌ای حاوی ترک سطحی تحت فشار داخلی با استفاده از روش اجزاء محدود سه بعدی مورد بررسی قرار گرفته است. لوله استوانه‌ای‌، حاوی ترک نیم‌بیضوی محیطی خارجی بوده و محدوده‌ی نسبت ابعادی ترک بین 2/0 تا 1 و عمق نسبی آن 2/0 و 8/0 می‌باشد. ابتدا به منظور اطمینان از صحت مدل‌سازی، استوانه‌ی حاوی ترک سطحی تحت کشش یکنواخت شبیه‌سازی و نتایج حاصل با داده‌های موجود مقایسه شده است. ضرایب شدت تنش در نوک ترک با استفاده از انتگرال   تعیین شده است. سپس به ترمیم استوانه ترک‌دار تحت فشار داخلی با استفاده از وصله‌ی کامپوزیتی به صورت موضعی پرداخته شده است. در این راستا به منظور انتخاب وصله مناسب، تأثیر پارامترهای مختلف مانند طول، پهنا، ضخامت، جنس و زاویه‌ی قرارگیری الیاف چند لایه‌ای کامپوزیتی بر ضرایب شدت تنش ارزیابی شده است. نتایج تحقیق کاهشی به میزان 30 درصد را در میزان ضریب شدت تنش با استفاده از وصله‌ گذاری مناسب نشان داده است. این امر سبب افزایش طول عمر به دلیل کاهش نرخ رشد ترک می‌گردد.

کلیدواژه‌ها


[1] Duga J. J., Fisher W. H., Buxbaum R. W., Rosenfield A. R., Buhr A. R., Honton E. J. and McMillan S. C., The Economic Effects of Fracture in the United States. 1st Edition, National Bureau of Standards Washington, 1983.
[2] شریفی ح.، نبوی س.م.، کاربرد نگهداشت پیشگویانه در حفظ سلامت تجهیزات و بررسی روش‌های آن. چهارمین کنگره سراسری فناوری‌های نوین ایران، تهران، ایران، 1395.
[3] فلاح م.، ترمیم سازه‌های هوایی ترک‌دار با استفاده از وصله‌های کامپوزیتی تحت بار خستگی. پایان‌نامه‌ی کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، 1392.
[4] Saeed N., Ronagh H. and Virk A., Composite Repair of Pipelines, Considering the Effect of Live Pressure-Analytical and Numerical Models with Respect to ISO/TS 24817 and ASME PCC-2. Composites Part B: Engineering, Vol. 58, pp. 605-610, 2014.
[5] Shahani A. R. and Habibi S. E., Stress Intensity Factors in a Hollow Cylinder Containing a Circumferential Semi-Elliptical Crack subjected to Combined Loading. International Journal of Fatigue, Vol. 29, pp. 128-140, 2007.
[6] Carpinteri A. and Brighenti R., Circumferential Surface Flaws in Pipes under Cyclic Axial Loading. Engineering Fracture Mechanics, Vol. 60, No. 4, pp. 383-396, 1998.
[7] Carpinteri A., Brighenti R. and Spagnoli A., Part-Through Cracks in Pipes under Cyclic Bending. Nuclear Engineering and Design, Vol. 185, pp. 1-10, 1998.
[8] Predan J., Mocilnik V. and Gubeljak N., Stress Intensity Factors for Circumferential Semi-Elliptical Surface Cracks in a Hollow Cylinder subjected to Pure Torsion. Engineering Fracture Mechanics, Vol. 105, pp. 152-168, 2013.
[9] Khoramishad H. and Ayatollahi M. R., Finite Element Analysis of a Semi-Elliptical External Crack in a Buried Pipe. Transactions of the Canadian Society for Mechanical Engineering, Vol. 33, No. 3, pp. 399-409, 2009.
[10] Diamantoudis A. T. and Labeas G. N., Stress Intensity Factors of Semi-Elliptical Surface Cracks in Pressure Vessels by Global-Local Finite Element Methodology. Engineering Fracture Mechanics, Vol. 72, pp. 1299-1312, 2005.
[11] Dao N. H. and Sellami H., Stress Intensity Factors and Fatigue Growth of a Surface Crack in a Drill Pipe During Rotary Drilling Operation. Engineering Fracture Mechanics, Vol. 96, pp. 626-640, 2012.
[12] Zareei A. and Nabavi S. M., Weight Function for Circumferential Semi-Elliptical Cracks in Cylinders due to Residual Stress Fields Induced by Welding. Archive of Applied Mechanics, Vol. 86, No. 7, pp. 1219-1230, 2016.
[13] Raju I. S. and Newman J. C., Stress-Intensity Factors for Circumferential Surface Crack in Pipe and Rods under Tension and Bending Loads. Fracture Mechanics, Vol. 17, pp. 789-805, 1986.
[14] Saffih A., Hariri S., Comparison of Semi-Elliptical Cracks in Cylinders with a Thickness Transition and in a Straight Cylinders–Elastic-Plastic Behavior. Engineering Fracture Mechanics, Vol. 73, pp. 2685-2697, 2006.
[15] Shahani A. R. and Kheirikhah M. M., Stress Intensity Factor Calculation of Steel-Lined Hoop-Wrapped Cylinders with Internal Semi-Elliptical Circumferential Crack. Engineering Fracture Mechanics, Vol. 74, pp. 2004-2013. 2007.
[16] Chen J. and Pan H., Stress Intensity Factor of Semi-Elliptical Surface Crack in a Cylinder with Hoop Wrapped Composite Layer. International Journal of Pressure Vessels and Piping, Vol. 110, pp. 77-81, 2013.
[17] آیت­آلهی م.، آزاد ه.، هاشمی ر.، بررسی رفتار لوله‌های ترک‌دار تقویت شده توسط وصله کامپوزیتی. اولین کنفرانس لوله و صنایع وابسته، تهران، 1386.
[18] Benyahia F., Albedah A. and Bachir Bouiadjr, B., Stress Intensity Factor for Repaired Circumferential Cracks in Pipe with Bonded Composite Wrap. Journal of Pressure Vessel Technology, Vol. 136, pp. 041201-1-5, 2014.
[19] Meriem-Benziane M., Abdul-Wahab S. A., Zahloul H., Babaziane B., Hadj-Meliani M. and Pluvinage G., Finite Element Analysis of the Integrity of an API X65 Pipeline with a Longitudinal Crack Repaired with Single- and Double-Bonded Composites. Composites Part B, Vol. 77, pp. 431-439, 2015.
[20] Malekan M. and Cimini Jr C. A., Finite Element Analysis of a Repaired Thin-Walled Aluminum Tube Containing a Longitudinal Crack with Composite Patches under Internal Dynamic Loading. Composite Structures, Vol. 184, pp. 980-1004, 2018.
[21] Woo K. S., Ahn J. S. and Yang, S. H., Cylindrical Discrete-Layer Model for Analysis of Circumferential Cracked Pipes with Externally Bonded Composite Materials. Composite Structures, Vol. 143, pp. 317-323, 2016.
[22] نبوی س. م.، پورعبدل میانجی ا.، جمال‌امیدی م.، بررسی عددی اثر وصله‌های کامپوزیتی بر ضرایب شدت تنش لوله‌های استوانه‌ای حاوی ترک محیطی کامل. نشریه مهندسی سازه و ساخت، پذیرفته شده، 1397.
[23] Zarrinzadeh H., Kabir M. Z. and Deylami A., Crack Growth and Debonding Analysis of an Aluminum Pipe Repaired by Composite Patch under Fatigue Loading. Thin-Walled Structures, Vol. 112, pp. 140-148, 2017.
[24] Zarrinzadeh H., Kabir M. Z. and Deylami A., Experimental and Numerical Fatigue Crack Growth of an Aluminium Pipe Repaired by Composite Patch. Engineering Structures, Vol. 133, pp. 24-32, 2017.
[25] Anderson T. L., Fracture mechanics fundamentals and application, 4th Edition, Taylor & Francis Group, Boca Raton, 2017.
[26] Jamal-Omidi M., Falah M. and Taherifar D., 3-D Fracture Analysis of Cracked Aluminum Plates Repaired with Single and Double Composite Patches using XFEM. Structural Engineering and Mechanics, Vol. 50, No. 4, pp. 525-539, 2014.