مطالعه عددی جریان مغشوش مافوق صوت بین پره های توربین بخار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، ایران

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

در این مقاله، جریان تراکم­پذیر مافوق صوت غیر­لزج و لزج بین پره­های یک توربین بخار با روش دنتون بررسی شده است. نوآوری این مقاله بهبود روش حجم محدود دنتون با افزودن جملات لزجت مغشوش در مدلسازی دو بعدی می باشد. تفحص بیشتر در این مقوله باعث بهبود در طراحی خواهد شد. معادلات ناپایای ناویراستوکس به عنوان معادلات حاکم بر رفتار سیال تراکم پذیر و لزج می باشد، که با روش پیمایشی زمان مبتنی بر فرمول بندی مرکز سلولی مورد اصلاح قرار گرفته است. در برنامه نوشته شده با زبان فرترن از روش حجم محدود برای گسسته سازی و مدل بالدوین-لوماکس برای اثرات اغتشاش در جریان لزج استفاده شده است، استقلال حل از تعداد نقاط شبکه نیز حاصل گردیده است. توزیع فشار  با داده­های تجربی اعتبار سنجی شده است و در منطقه شوک انطباق بسیار مطلوبی به همراه کاهش خطاهای عددی با  داده­های تجربی حاصل شده است.

کلیدواژه‌ها

موضوعات


[1]    R.A. Chaplin, Steam turbine impulse and reaction blading, Thermal power plants, Vol. 3, pp. 57-84 2012.
[2]    D K.A.Hafez, O.A.Elsamni, K.Y.Zakaria, Flow and turbulent structures around simplified car models, Computers & Fluids, Vol. 96, pp. 122-135, 2014.
[3]    D.E.Aljure, O.Lehmkuhl, I.Rodriguez, A.Oliva, Numerical investigation of the fully developed turbulent flow over a moving wavy wall using k-ε turbulence model, Alexandria Engineering Journal, Vol.50, No.2, pp.145-162, 2011 
[4]    A.Malvandi, F.Hedayati, D.D.Ganji, Thermodynamic optimization of fluid flow over an isothermal moving plate, Alexandria Engineering Journal, Vol.25, No. 3, pp.277-283, 2013.
[5]    A.Malvandi, D.Ganji Domairry, F. Hedayati, M. Kaffash Hossein, M. Jamshidi, Series solution of entropy generation toward and isothermal flat plate, Thermal Science, Vol.16, No. 5, pp.1289-1295, 2012.
[6]    Y.M.Ahmed, Numerical simulation for the free surface flow around a complex ship hull from at different Froude numbers, Alexandria Engineering Journal, Vol.50, No. 3, pp.229-235, 2011.
[7]    A.K.Singhal, D.B.Spalding, A 2D Partially-Parabolic Procedure for AxialFlow, Mechanical Engineering Department, Imperial College, 1976.
[8]    B.H.Dennis, I.N.Egorov, Z.X.Han, G.S. Dulikravich, C.Poloni, Multi-objective optimization of turbomachinery cascades for minimum loss, maximum loading, and maximum gap-to- chord ratio, International Journal of  Turbo & Jet-Engines, Vol.18, No. 3, pp.201-210, 2001.  
[9]    C.J. Chesnakas, W.F. Ng, Supersonic through-flow fan blade cascade studies, Journal of Fluids Engineering, Vol.125, No.5, pp.796–805, 2003.
[10]  S. Yamamoto, Computation of Practical Flow Problems with Release of Latent Heat, Energy, Vol. 30, No. 2, pp.197–208, 2005. 
[11]  M.R. Mahpeykar, A.R. Teymourtash, An Investigation of 2D-Twophase Flow of Steam in a Cascade of Turbine Blading by the Time Marching Method, Amirkabir University Journal, Vol. 14, No. 56, pp. 254-269, 2003. (In Persian)
[12]  M.R. Mahpeykar, A.R. Teymourtash, E. Lakzian, The Effects of Viscosity on Pressure Distribution and Droplet Size in Transonic Steam Flow Through a Turbine Cascade, Iranian Journal of Mechanical Engineering, Vol. 11, No. 1, pp. 6-29, 2010. (In Persian)
[13]  H. Mashmoushy, M.R. Mahpeykar, F. Bakhtar, Studies of nucleating and wet steam flows in 2-D cascades, Institution of Mechanical Engineers, Vol. 218, No. 8, pp.843-858, 2004.
[14]  A.R. Teymourtash, M.R. Mahpeykar, E. Lakzian, An Investigation of Condensing Flow in a Steam Turbine Cascade, Using the Baldwin- Lomax Turbulence Model, Journal of Mechanical Engineering Sharif, Vol. 27, No.2, pp. 25-36, 2011. (In Persian)
[15]  S.A. Moshizi, A. Madadi, M.J.Kermani, Comparison of inviscid and viscous transonic flow fielad in VKI gas turbine blade cascade, Alexandria Engineering Journal, Vol.53, No. 2, pp.275-280, 2015.
[16] J. D.Denton, An Improved Time Marching Method for Turbomachinery Flow Calculations, Journal of Engineering for Power, Vol. 105, No. 3, pp. 514-521, 1983.
[17] J.D. Denton, A Time Marching Method for Two and Three Dimensional Blade to Blade Flow, Aeronautical Research Council Reports and Memoranda. No.3775, 1975.
[18]  J.D. Denton, W.N. Dawes, Computational fluid dynamics for turbo machinery, Institution of Mechanical Engineers, Vol 213 Part C, pp. 107-124, 1999.
[19]  E. YousefiRad, M.R. Mahpeykar, A. Teymourtash, Optimization of CUSP Technique Using Inverse Modeling for Improvement of Jameson’s 2-D Finite Volume Method, Modares Mechanical Engineering, Vol.14, No.8, pp.174-182, 2014 (In Persian)
[20]  E. YousefiRad, M.R. Mahpeykar, Modeling of 2D Two-Phase Flow in Cascade Blades of Steam Turbine Using Jameson’s Finite Volume Method with CUSP Technique, Modares Mechanical Engineering, Vol. 15, No. 4, pp. 141-150, 2015 (In Persian)
[21]  M.J. Kermani, A.G. Gerber, A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow, International Journal of Heat and Mass Transfer, Vol.46, No.17, pp. 3265–3278, 2003.
[22]  K.A. Hoffmann, S.T. Chiang, Computational fluid dynamics, Engineering Education System, pp. 1-150, 2000.
[23]  B. S. Baldwin, H. Lomax, Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows, American Institute of Aeronautics and Astronautics Journal, pp.78-257, 1978.
[24]  B.S. Baldwin, H. Lomax, Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows, in The 16th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 1978.
[25]  W. Rodi, Simulation of turbulence in practical flow calculations, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, pp. 1-22, 2000.
[26]  F. Bakhtar, M.R. Mahpeykar, K.K. Abbas, An Investigation of Nucleating Flows of Steam in a Cascade of Turbine Balding-theoretical Treatment, Journal of Fluids Engineering, Vol. 117, No. 1, pp. 138-145, 1995.
[27]  A. Jamson, W. Schmidt, E. Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge- Kutta Time-Stepping Schemes, in AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto, California , pp.1-14 1981.
[28]       F. Bakhtar, M.R. Zamiri, E. Rodrigueslelis, A comparative study of treatment of 2-D two-phase flows of steam by a Rung-Kutta and by Denton's method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 221, No. 6, pp. 689-706, 2007.