مطالعه تجربی فرایند ترکیبی اکستروژن پیچشی و مستقیم بر خواص مکانیکی و الکتریکی مس خالص تجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

در این تحقیق مس خالص تجاری در معرض یک فرآیند شکل‌دهی ترکیبی قرار گرفته است. برای این منظور از یک قالب اکستروژن پیچشی با کانال خروجی تنگ‌شونده استفاده شده است. سیستم‌های لغزشی متفاوتی از نوع برشی به دلیل اعمال کرنش‌های شعاعی و طولی در نمونه فعال می‌شود و خواص آن را تحت تأثیر قرار می دهد. نتایج بدست آمده نشان می‌دهد که ریز ساختار فلز مس با عبور از قالب اکستروژن پیچشی دگرگون شده و اندازه دانه به شدت کاهش می‌یابد. ساختار دانه بندی ماده با عبور از کانال خروجی و اعمال اکستروژن مستقیم روی آن همگن‌تر می‌شود و روند کاهش اندازه‌های دانه ادامه پیدا می‌کند. با اعمال فرآیند اکستروژن پیچشی بر روی مس، استحکام تسلیم فشاری آن از 115 به 167 مگاپاسکال و مقدار میانگین سختی از 80 به 127 ویکرز افزایش می‌یابد. این مقادیر با اعمال فرآیند اکستروژن مستقیم به 192 مگاپاسکال و 140 ویکرز رسیده است. همچنین نتایج نشان می‌دهد با اعمال فرآیند ترکیبی اکستروژن پیچشی و مستقیم بر روی فلز مس، مقدار مقاومت الکتریکی سطحی آن نسبت به نمونة اولیه حدود 7 درصد افزایش یافته است.

کلیدواژه‌ها

موضوعات


[1]     Bagherpour E., Pardis N., Reihanian M. and Ebrahimi R., An Overview on Severe Plastic Deformation: Research Status, Techniques Classification, Microstructure Evolution, and Applications. The International Journal of Advanced Manufacturing Technology, Vol. 100, pp. 1647–1694, 2018.
[2]     رعنائی م. ا.، بهلولی ح. و خلیلی خ.، مطالعه تجربی اثر مقدار کرنش اعمالی در هر مرحله از فرآیند اکستروژن در کانال‌های هم مقطع زاویه دار بر روند تکامل استحکام مس خالص تجاری. مجلة مهندسی مکانیک دانشگاه تبریز، دورة 47، شمارة 2 - شماره پیاپی 79، صفحه 333-342، 1395.
[3]     Shamsborhan M. and Ebrahimi M., Production of Nanostructure Copper by Planar Twist Channel Angular Extrusion Process. Journal of Alloys and Compounds, Vol. 682, pp. 552-556, 2016.
[4]     Ajayan P. M., Schadler L. S. and Braun P. V., Nanocomposite Science and Technology. WILEY-VCH Verlag, 2006.
[5]     Schmidt O. G., Deneke Ch., Nakamura Y., Zapf-Gottwick R., Müller C. and Jin-Phillipp N. Y., Nanotechnology- Bottom-up Meets Top-down, Part of the Advances in Solid State Physics,Vol. 42, pp. 231-240, 2002.
[6]     Yuwei Xun, Farghalli A. Mohamed, Refining efficiency and capability of top-down synthesis of nanocrystalline materials, Materials Science and Engineering: A, Vol. 528, pp: 5446-5452, 2011.
[7]     Valiev R., Islamgaliev R. K. and Tumentsev A.N., The Disclination Approach to Nanostructured SPD Materials. Solid State Phenomena, Vol. 87, pp. 255-264, 2002.
[8]     Yuntian T. Zhu, Terry C. Lowe, Terence G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Materialia, Vol. 51, pp. 825-830, 2004.
[9]     Mishra A., Kad B., Gregori F. and Meyers M., Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Materialia, Vol. 55, pp. 13-28, 2007.
[10]    Saki T., Belyakof A., Kaibyshev R., Miura H. and Jonas J., Dynamic and post- dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science. Vol. 60, pp. 130-207, 2014.
[11]    Kim I., Jeong W. S., Kim J., Park K. T. and Shin D., Deformation structures of pure Ti produced by equal channel angular pressing. Scripta Materialia. Vol. 45, pp. 575-580, 2001.
[12]    Figueiredo R. and Langdon T., Principles of grain refinement in magnesium alloys processed by equal channel angular pressing. Journal of Materials Science. Vol. 44, pp. 4758-4762, 2009.
[13]    Kuhlmann-Wilsdorf D., Theory of Plastic Deformation. Materials Science and Engineering A, vol. 113, pp. 1-44, 1989.
[14]    Zehetbauer M. and Valiev R. Z., Nanomaterials by Severe Plastic Deformation. WILEY-VCH, 2002.
[15]    Weertman J. R., Hall-Petch Strengthening in Nanocrystalline Metals. Materials Science and Engineering: A, Vol. 166, pp. 161-167, 1993.
[16]    Afsari M., Ranaei M. A., Equal Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties. International Journal of Nanoscience and Nanotechnology, Vol. 10, No. 4, pp. 215-222, 2014.
[17]    Beygelzimer Y., Orlov D. and Varyukhin V., A New Severe Plastic Deformation Method: Twist Extrusion. The Minerals, Metals & Materials Society, Vol. 23, pp. 297–304, 2002.
[18]    Kulagin R., Latypov M. I., Kim H. S., Varyukhin V., and Beygelzimer Y., Cross Flow During Twist Extrusion: Theory, Experiment, and Application. METALLURGICAL AND MATERIALS TRANSACTIONS A, Vol. 44A, pp. 3211- 3220, 2013.
[19]    Reshetov A., Kulagin R., Korshunov A. and Beygelzimer Y., The Occurrence of Ideal Plastic State in CP Titanium Processed by Twist Extrusion. Adv. Eng. Mater, Vol. 17,pp. 890-899, 2017.
[20]    Latypov I. M., Yoon E. Y., Lee D. J., Kulagin R., Beygelzimer Y., Salehi M. S. and Kim H. S., Microstructure and Mechanical Properties of Copper Processed By Twist Extrusion With a Reduced Twist-Line Slope. Metallurgical and Materials Transactions A, 2014.
[21]    Orlov D., Todaka Y., Umemoto M., Beygelzimer Y., Horita Z. and Tsuji N., Plastic Flow and Grain Refinement Under Simple Shear-Based Severe Plastic Deformation Processing. Materials Science Forum, Vols. 604-605, pp. 171-178, 2009.
[22]    Zendehdel H., Hassani A., Influence of Twist Extrusion Process on Microstructure and Mechanical Properties of 6063 Aluminum Alloy. Materials and Design ,Vol.37 ,pp. 13–18, 2012.
[23]    Beygelzimer Y., Varyukhin V., Orlov D. and Synkov S., Twist Extrusion - A Process for Strain Accumulation, pp. 37-50, TEAN, 2003.
[24]    Ranjbar Bahadori Sh., Dehghani K. and Akbari Mousavi S. A. A., Comparison of Microstructure and Mechanical Properties of Pure Copper Processed by Twist Extrusion and Equal Channel Angular Pressing. Materials Letters, Vol. 152, pp. 48-52, 2015.
[25]    Beygelzimer Y., Varyukhin V., Synkov S. and Orlov D., Useful properties of twist extrusion. Materials Science and Engineering: A, Vol. 503, pp. 14-17, 2009.
[26]    Habibi A., Ketabchi M. and Eskandarzadeh M., Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process. Journal of Materials Processing Tech, Vol. 211, pp. 1085-1090, 2011.
[27]    Sulkowski B., Panigrahi A., Ozaltin K., Lewandowska M., Mikułowski B. and Zehetbauer M., Evolution of strength and structure during SPD processing of Ti–45Nb alloys: experiments and simulations. Journal of Materials Science, Vol. 49, pp. 6648–6655, 2014.
[28]    Hailong J., Ruben B., Knut M., Yanjun Li., The deformation and work hardening behaviour of a SPD processed Al-5Cu alloy. Journal of Alloys and Compounds, Vol. 697, PP. 239-248, 2017.
[29]    Hosseini S. A. and Daneshmanesh H., High strength, high conductivity ultra- fine grains commercial pure copper produced by ARB process. Materials and Design, Vol. 30, pp. 2911-2918, 2009.
[30]    رعنایی م. ا، افسری ا.، احمدی بروغنی س. ی. و مشکسار م. م.، بررسی عملکرد مس خالص ریزدانه به عنوان الکترود ابزار فرآیند ماشینکاری تخلیة الکتریکی. مجلة مهندسی مکانیک مدرس، دوره 14، شماره 1، صفحه 97-105، 1393.