[1] Bridgwater T., Biomass for energy. Journal of the Science of Food and Agriculture, Vol. 86, No. 12, pp.1755-1768, 2006.
[2] Wright L., Boundy B., Perlack B., Davis S. and Saulsbury B., Biomass Energy Data Book, Volume 1, 2006.
[3] Kuruparan P., Norbu T. and Shapkota P., Municipal solid waste management in Asia: Asian regional research program on environmental technology (ARRPET). Asian Institute of Technology, 2004.
[4] WLarminie J., Dicks A. and McDonald M.S., Fuel cell systems explained (Vol. 2). Chichester, UK: J. Wiley, 2003.
[5] نامی ح. و رنجبر س.ف.، تحلیل انرژی و اگزرژی چرخهی اوکسی فیول MATIANT. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 4، ص 267-274، 1395.
[6] Zohuri B., Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management. Springer, 2016.
[7] Reay D., McGlen R. and Kew P., Heat pipes: theory, design and applications. Butterworth-Heinemann, 2013. .
[8] سیاحی م.، ماموریان م. و قدیری م.، بررسی آزمایشگاهی تاثیر نانوسیال بر عملکرد گرمایی لولههای گرمایی نوسانی. مجلۀ مهندسی مکانیک مدرس، د. 16، ش. 13، ص 162-165، 1395.
[9] Dillig M., Leimert J. and Karl J., Planar high temperature heat pipes for SOFC/SOEC stack applications. Fuel Cells, Vol. 14, No. 3, pp.479-488, 2014.
[10] Bang-Møller C., Rokni M. and Elmegaard B., Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy, Vol. 36, No. 8, pp.4740-4752, 2011.
[11] پیرکندی ج.، قاسمی م. و حامدی م.ح.، مقایسه عملکرد سیستمهای هیبریدی مستقیم و غیرمستقیم توربین گاز و پیل سوختی اکسید جامد از دیدگاه ترمودینامیکی و اگزرژی. مجلۀ مهندسی مکانیک مدرس، د. 12، ش. 3، ص 117-133، 1391.
[12] Gadsbøll R.Ø., Thomsen J., Bang-Møller C., Ahrenfeldt J. and Henriksen U.B., Solid oxide fuel cells powered by biomass gasification for high efficiency power generation, Energy, Vol. 131, pp. 198-206, 2017.
[13] Ghadamian H. and Ariyanfar L., A double pipe heat exchanger design and optimization for cooling an alkaline fuel cell system. Iranian Journal of Hydrogen & Fuel Cell, Vol. 1, No. 4, pp.223-231, 2015.
[14] Santhanam S., Schilt C., Turker B., Woudstra T. and Aravind P.V., Thermodynamic modeling and evaluation of high efficiency heat pipe integrated biomass Gasifier–Solid Oxide Fuel Cells–Gas Turbine systems. Energy, Vol. 109, pp.751-764, 2016.
[15] Borji M., Atashkari K., Ghorbani S. and Nariman-Zadeh N., Model-based evaluation of an integrated autothermal biomass gasification and solid oxide fuel cell combined heat and power system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 231, No. 4, pp.672-694, 2017.
[16] Ptasinski K.J., Prins M.J. and Pierik A., Exergetic evaluation of biomass gasification. Energy, Vol. 32, No. 4, pp.568-574, 2007.
[17] Perlack R.D., Wright L.L., Turhollow A.F., Graham R.L., Stokes B.J. and Erbach D.C., Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab TN, 2005.
[18] Loha C., Chatterjee P.K. and Chattopadhyay H., Performance of fluidized bed steam gasification of biomass–modeling and experiment. Energy Conversion and Management, Vol. 52, No. 3, pp.1583-1588, 2011.
[19] Cengel Y.A. and Boles M.A., Thermodynamics: an engineering approach. Sea, 1000, p.8862, 2002.
[20] Peters R., Riensche E. and Cremer P., Pre-reforming of natural gas in solid oxide fuel-cell systems. Journal of Power Sources, Vol. 86, No. 1, pp.432-441, 2000.
[21] Dunn P.D. and Reay D., Heat pipes. Elsevier, 2012.
[22] Perdikaris N., Panopoulos K.D., Fryda L. and Kakaras E., Design and optimization of carbon-free power generation based on coal hydrogasification integrated with SOFC. Fuel, Vol. 88, No. 8, pp.1365-1375, 2009.
[23] Fink J.K. and Leibowitz L., Thermodynamic and transport properties of sodium liquid and vapor (No. ANL/RE--95/2). Argonne National Lab., IL (United States), 1995.
[24] Mills A.F., Heat and Mass Transfer, Irwin. Inc., Chicago, 1995.
[25] Ranjbar F., Chitsaz A., Mahmoudi S.M.S., Khalilarya S. and Rosen M.A., Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell. Energy Conversion and Management, Vol. 87, pp.318-327, 2014.
[26] Colpan C.O., Dincer I. and Hamdullahpur F., Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy, Vol. 32, No. 7, pp.787-795, 2007.
[27] Bossel U.G., Final report on SOFC data facts and figures. Swiss Federal Office of Energy, Berne, CH, 1992.
[28] Kim J.W., Virkar A.V., Fung K.Z., Mehta K. and Singhal S.C., Polarization effects in intermediate temperature, anode‐supported solid oxide fuel cells. Journal of the Electrochemical Society, Vol. 146, No. 1, pp.69-78, 1999.
[29] Chan S.H., Low C.F. and Ding O.L., Energy and exergy analysis of simple solid-oxide fuel-cell power systems. Journal of Power Sources, Vol. 103, No. 2, pp.188-200, 2002.
[30] Tao G., Armstrong T. and Virkar A., February. Intermediate temperature solid oxide fuel cell (IT-SOFC) research and development activities at MSRI. In Nineteenth annual ACERC&ICES conference, Utah, 2005.