حل تشابهی انتقال حرارت نانوسیال درجریان سکون متقارن محوری همراه با مکش سطحی یکنواخت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی شیمی، دانشگاه آزاد اسلامی واحد شاهرود، شاهرود، ایران

2 استادیار، گروه مکانیک، دانشگاه آزاد اسلامی واحد شاهرود، شاهرود، ایران

3 استادیار، گروه مهندسی شیمی، دانشگاه آزاد اسلامی واحد شاهرود، شاهرود، ایران

چکیده

در این تحقیق دمای بی بعد و انتقال گرمای جابجایی در جریان سکون شعاعی نانو سیال همراه با نفوذ سطحی یکنواخت   بر روی استوانه ساکن به صورت پایا بررسی شده است. جریان آزاد پایا بوده و قدرت اولیه جریان   میباشد. در این مسئله حل تشابهی معادلات اندازه حرکت ومعادله انرژی، با تبدیلات مناسب ذکر شده در این تحقیق، ارائه شده است. معادلات به صورت کاملا تشابهی در شرایطی حل شده اند که دیواره تحت تاثیر  نفوذ سطحی یکنواخت قرار دارد.کلیه ی حل های ذکر شده برای اعداد  رینولدز  بین 1/0 تا 1000 ،  مقادیر گوناگون نفوذ  سطحی بی بعد  و مقادیر معینی از کسر حجمی نانو ذرات ارائه شده است که در آنها a  شعاع  استوانه و  لزجت سینماتیکی سیال پایه است.  نتایج نشان میدهد برای همه اعداد  رینولدز،  با کاهش کسر حجمی  نانوذرات و افزایش مکش سطحی، عمق نفوذ مو لفه های شعاعی و محوری میدان سرعت و تنش برشی دیواره، افزایش می یابد به علاوه افزایش کسر حجمی نانوذرات و مکش سطحی موجب افزایشضریب انتقال حرارت و عدد ناسلتمیشود.

کلیدواژه‌ها

موضوعات


[1] Choi S.U.S., Enhancing thermal conductivity of fluid with nanoparticles, Dev. Appl Non-Newtonian Flows, Vol. 66, pp. 99–105, 1995.
[2] Maigab S.E.B., Nguyen C.T., Galanis N. and Roy G., Heat transfer behaviors of nanofluid in a uniformly heated tube, Superlattices Microstruct, Vol. 35, No. 3-6, pp. 453–462, 2004.
[3] Heris S.Z., Etemad S.Gh. and Esfahani M.N., Experimental investigation of oxide nanofluid laminar forced flow convective heat transfer, Int. Comm. Heat Mass Transf, Vol. 33, No.4, PP. 529–535, 2006.
[4] Duangthongsuk W., Wongwises S., Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchangers, Int. J. Heat Mass Transf, Vol.52, No.7-8,  pp. 2059–2067, 2009.
[5] Santra A.K., Sen S., Chkroborty M., Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci, Vol. 48, No.2, pp. 391–400, 2009.
[6] Nguyen C.T., Galanis N., Polidori G., Fohanno S., Popa C.V. and Beche, A.L., An experimental study of con- fined and submerged impinging jet heat transfer using Al2O3-water nanofluid, Int. J. Therm. Sci, Vol. 48, No.2, pp. 401–411, 2009.
[7] Kuznetsov A. V. and Nield D.A., Natural convection boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci, Vol. 49, No.2, pp. 243–247, 2010.
[8] Kuznetsov A. V. and Nield D. A., Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model, Transp. Porous Med, Vol.81, No. 3, pp. 409–422, 2010.
[9] Khan W. A. and Pop I., Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer, Vol. 53, No.11-12, pp. 2477–2483, 2010.
[10] Hiemenz K., Die Grenzchicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten geraden, Kreiszylinder. Dinglers Polytech. J. Vol. 326  pp. 321-410, 1911.
[11] Homann F. Z., Der Einfluss grosser Zahighkeit bei der Strmung um den Zylinder und um die Kugel, Zeitsch. Angew. Math. Mech,Vol. 16, No.3, pp. 153-164, 1936.
[12] Howarth L., The boundary layer in three dimensional flow. Part II. The flow near a stagnation point. Phil. Mag. Series 7, Vol. 42, pp. 1433-1440, 1951.
[13] Davey A., Boundary layer flow at a saddle point of attachment, Journal of Fluid Mechanics, Vol. 10, No.4, pp. 593-610, 1951.
[14] Wang C., Axisymmetric stagnation flow on a cylinder, Quarterly of Applied Mathematics, Vol. 32, No. 2, pp. 207-213, 1974.
[15] Gorla R.S.R., Unsteady laminar axisymmetric stagnation flow over a circular cylinder, Dev. Mech,  Vol.9, pp. 286-288, 1977.
[16] Gorla R.S.R., Nonsimilar axisymmetric stagnation flow on a moving cylinder, Int. J. Engineering Science, Vol. 16, No. 6, pp. 397-400, 1978.
[17] Gorla R.S.R., Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to time dependent free stream velocity, Int. J. Engineering science, Vol. 16, No.7, pp. 493- 502, 1978.
[18] Gorla R.S.R., Unsteady viscous flow in the vicinity of an axisymmetric stagnation-point on a cylinder, Int. J. Engineering Science, Vol. 17, No. 1, pp. 87-93, 1979.
[19] Cunning G.M., Davis A.M.J. and Weidman, P.D., Radial stagnation flow on a rotating cylinder with uniform transpiration, Journal of Engineering mathematics, Vol. 33, No. 2, pp. 113-128, 1998.
[20] Takhar H.S., Chamkha A.J. and Nath G., Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder, Int. Journal of Engineering Science, Vol. 37, No. 15, pp. 1943-1957, 1999.
[21] Saleh, R. and Rahimi, A. B., Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder with Time- Dependent Axial Velocity and Uniform Transpiration, Journal of Fluids Engineering, Vol. 126, No. 6, pp. 997–1005, 2004.
[22] Rahimi A. B. and Saleh R., Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Rotating Cylinder With Time- Dependent Angular Velocity and Uniform Transpiration, Journal of Fluids Engineering, Vol. 129, No. 1, pp. 107–115, 2007.
[23] Rahimi A. B., and Saleh R., Similarity Solution of Unaxisymmetric Heat Transfer in Stagnation-Point Flow on a Cylinder with Simultaneous Axial and Rotational Movements, Journal of Heat Transfer, Vol. 130, No. 5, pp. 054502-1–054502-5, 2008.
[24] Abbasi A. S. and Rahimi A. B., Non-Axisymmetric Three- Dimensional Stagnation-Point Flow and Heat Transfer on a Flat Plate, Journal of Fluids Engineering, Vol. 131, No. 7, pp. 074501.1– 074501.5, 2009.
[26] Abbasi A. S. and Rahimi A. B., Three-Dimensional Stagnation- Point Flow and Heat Transfer on a Flat Plate with Transpiration, Journal of Thermophysics and Heat Transfer, Vol. 23, No. 3, pp. 513–521, 2009.
[27] Abbasi A. S., Rahimi A. B. and Niazmand H., Exact Solution of Three-Dimensional Unsteady Stagnation Flow on a Heated Plate, Journal of Thermophysics and Heat Transfer, Vol. 25, No. 1, pp. 55–58, 2011.
[28] Abbasi A. S. and Rahimi A. B., Investigation of Two-Dimensional Stagnation-Point Flow and Heat Transfer Impinging on a Flat Plate, Journal of Heat Transfer, Vol. 134, No.6, pp. 064501.1-064501.5, 2012.
[29] Corcione M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Ene. Convers. Manage, Vol. 52, No. 1, pp. 789-793, 2011.
[30] Gorla R.S.R., Heat transfer in axisymmetric stagnation flow on a cylinder, Applied Scientific Research J., Vol.32, No. 5, pp. 541-553, 1976.