تحلیل تجربی رفتار فیزیکی/مکانیکی روکش شفاف نانو کامپوزیتی از جنس پلی‌یورتان/ نانو ذرات آلومینا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجائی، تهران، ایران

3 استادیار، موسسه پژوهشی علوم و فناوری رنگ و پوشش، گروه پوشش‌های سطح و خوردگی، تهران، ایران

چکیده

در این تحقیق، پوشش‌های نانو کامپوزیت‌های بر پایه پلی‌یورتان حاوی درصدهای وزنی مختلف از نانو ذرات آلومینا تهیه و خواص فیزیکی/مکانیکی آن‌ها بر روی زمینه فولادی مورد بررسی قرار گرفت. خواص فیزیکی/   مکانیکی پوشش‌ها توسط آزمون‌های ضربه، خمش، کشش و آنالیز دینامیکی مکانیکی حرارتی ((DMTA مطالعه گردید. چگونگی پخش نانوذرات در پوشش توسط میکروسکوپ الکترونی روبش میدان مغناطیسی (FE-SEM) بررسی شد. نتایج ارزیابی خواص مکانیکی نانوکامپوزیت‌ها نشان داد که با افزایش درصد وزنی نانو ذرات تا 2 درصد  افزایش قابل ملاحظه استحکام کششی و انرژی در نقطه شکست کامپوزیت و تا چهار درصد وزنی افزایش چگالی اتصالات عرضی و مدول ذخیره پوشش مشاهده گردید. همچنین مقاومت در برابر ضربه و خمش کامپوزیت‌‌ها به دلیل انعطاف‌پذیری خوب پلی‌یورتان، با غلظت‌های پایین نانو ذرات تحت تأثیر قرار نگرفت. بهبود خواص فیزیکی/ مکانیکی به پخش مناسب نانوذرات در پوشش و مدول بالای آن‌ها ارتباط داده شد. همچنین نانوذرات توانستند تا انرژِی وارده به پوشش را در فصل مشترک پوشش/نانوذرات تلف نموده و استحکام آن را در برابر تنش وارده افزایش چشمگیر دهند. 

کلیدواژه‌ها


[1] Khudyakov I. V., ‌ Zopf D. R., and Turro N. J., Polyurethane nanocomposites, Designed Monomers and Polymers, Vol. 12, No.4, pp. 279-290, 2009.
[2] Sen S., and Nugay N.,Uncured and cured state properties of fly ash filled unsaturated polyester composites”, Applied Polymer Science, Vol. 77, No. 5, pp. 1128-1136, 2000.
[3] Park J.-J., Yoon K.-G., and Lee J.-Y., Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites or Insulation Materials of Heavy Electric Equipment, Transactions on Electrical and Electronic Materials, Vol.12, No.3, pp. 98-101, 2011.
[4] Petrovic Z. S., Javni I., and Waddon A., Applied Polymer Science, vol. 76, pp. 133-151, 2000.
[5] Choi  J. W., Kim  S. H., , and Kim  Y. J., Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposite, Polymer, Vol. 45, pp. 6045-6057, 2004.
[6] Pattanayak A., and Jana S. C., Properties of bulk-polymerized thermoplastic polyurethane nanocompoites, Polymer, Vol. 46, pp. 3394-3406, 2005.
[7] Cheng A., Wu S., Jiang D., Wu F., and Shen J.,Study of elastomeric polyurethane nanocomposites prepared from grafted organic-montmorillonite, Colloid Polymer Science, Vol. 284, pp. 1057-1061, 2006.
[8] Song, H.-J., Zhang Z.-Z., and Men X.-H., Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating, European Polymer Journal, Vol. 43, No. 10, pp. 4092-4102, 2007.
[9] Palimi M. J., Rostami M., Mahdavian M., and Ramezanzadeh B., Surface modification of Cr2O3nanoparticles with 3-amino propyltrimethoxy silane (APTMS). Part 1: Studying the mechanicalproperties of polyurethane/Cr2O3 nanocomposites’, Progress in Organic Coatings, Vol. 77, pp. 1663-1673, 2014.
[10] Palimi M. J., Rostami M., Mahdavian M., and Ramezanzadeh B., Surface modification of Fe2O3nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites, Applied Surface Science, Vol. 320, pp. 60-72, 2014.
[11] Ramezanzadeh B., Ghasemi E., Mahdavian M., Changizi E., and Mohamadzadeh Moghadam M. H., Characterization of covalently-grafted polyisocyanate chains on to graphene oxide for polyurethane composites with improved mechanical properties, Chemical Engineering Journal, Vol. 281, pp. 869-883, 2015.
[12] Javidparvar A. A., Ramezanzadeh B., and Ghasemi E., Effects of surface morphology and treatment of iron oxide nanoparticles on the mechanical properties of an epoxy coating, Progress in Organic Coatings, Vol. 90, pp. 10-20, 2016.
[13] Ramezanzadeha B., Moradian S., Khosravi A., and Tahmasebi N., Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clear coat, Progress in Organic Coatings, Vol. 72, No. 4, pp. 621-631, 2011.
[14] Ramezanzadeh B., and Attar M. M., Characterization of the fracture behavior and viscoelastic properties of epoxy-polyamide coating reinforced with nanometer and micrometer sized ZnO Particles, Progress in Organic Coatings, Vol. 71, pp. 242-249, 2011.
[15] Czichos, H., Saito T., and Smith L.R., Springer Handbook of Materials Measurement Methods. Technology & Engineering, pp. 303-304, 2006.
[16] Swain S., Sharma R. A., Bhattacharya S., and Chaudhari L., Effects of Nano-silica/Nano-alumina on Mechanical and Physical Properties of Polyurethane Composites and Coatings, Transactions on Electrical and Electronic Materials, Vol. 14, No. 1, pp. 1-8, 2013.
]17 [جولازاده م.، نوارچیان ا. ح.، و صادقی ف.، مروری بر فرایند نانو کامپوزیت‌های پلی‌یورتان، خاک رس و خواص آن، ماهنامه علمی-ترویجی فرآیند نو, سال 3، شماره 16، صفحه 19-1، 1387.
[18] Skaja, A., Fernando D., and Croll S., “Mechanical property changes and degradation during accelerated weathering of polyester-urethane coatings, Journal of Coatings Technology Research, Vol.3 No. 1, pp. 41-51, 2006.