Patel R. V., Shadpey F., Control of redundant robot manipulators, theory and experiments, Springer Berlin Heidelberg New York, 2005.
[1]
|
Nakanishi J., Cory R., Mistry M., Peters J., and Schaal S., Comparative experiments on task space control with redundancy resolution, IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Alberta Canada, pp. 3901-3908, Aug. 2005.
|
[2]
|
Wang L. T., Ravani B., Dynamic load carrying capacity of mechanical manipulators-Part 1, J. of Dynamic Sys., Measurement and Control, Vol. 110, pp. 46-52, 1988.
|
[3]
|
Wang L. T., Ravani B., Dynamic load carrying capacity of mechanical manipulators-Part 2, J. of Dynamic Sys., Meas. and Control, Vol. 110, pp. 53-61, 1988.
|
[4]
|
Korayem M. H., Nazemizadeh M., Rahimi N. H., Dynamic load carrying capacity of flexible manipulators using finite element method and Pontryagin's minimum principle, Journal of Optimization in Industrial Engineering, Vol. 12, pp. 17-24, 2013.
|
[5]
|
Pontryagin L., Boltianski V., Gamkrelidze R., Michtchenko E., The mathematical theory of optimal processes, Gordon and Breach Science Publishers, 4th edition, 1962.
|
[6]
|
Korayem M. H., Nikoobin A., Formulation and numerical solution of robot manipulators in point-to-point motion with maximum load carrying capacity, Transaction B: Mechanical Engineering, Sharif University of Technology, Vol. 16. pp. 101- 109, 2009.
|
[7]
|
Korayem M. H., Nikoobin A., Maximum payload path planning for redundant manipulator using indirect solution of optimal control problem, Int. J. Adv. Manuf. Tech. Vol. 44, pp. 725-736, 2009.
|
[8]
|
Karami N., Korayem M. H., Shafei A. M., Rafee Nekoo S., Theoretical and experimental investigation of dynamic load carrying capacity of flexible-link manipulator in point- to- point motion, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 199-206, 2015.
|
[9]
|
Salehi M., Nikoobin A., Optimal trajectory planning of flexible joint manipulator: Maximum load carrying capacity-minimum vibration, Modares Mechanical Engineering, Vol. 13, No. 14, pp. 68-80, 2014.
|
[10]
|
Shafei H. R., Bahrami M., Kamali A., Recursive Kane formulation for deriving the equations of motion a chain of robotic arms, 2th Int. conf. on Robotics and Mechatronics (ICRoM), K.N. Toosi University of Technology, Tehran, pp. 393-398, Oct. 2014.
|
[11]
|
Nakamura Y., Advanced robotics redundancy and optimization, Addison-Wesley Publishing Company, 1991.
|
[12]
|
Kirk D. E., Optimal control theory, An Introduction, Prentice-Hall Inc., 1970
|
[13]
|
Jeong Y., Lee Y., Kim K., Hong Y. S. and Park J. O., A 7 DOF wearable robotic arm using pneumatic actuators, 32th Int. Symp. On Robotics, Korea, pp. 388-393, Apr. 2001.
|
[14]
|
Lee H. Y., Yi B. J. and Choi Y., Joint-limit avoidance and kinetic-energy minimization in manipulators having surplus joints, J. of the Korean Physical Society, Vol. 53, No. 4, pp. 1910-1918, Oct. 2008.
|
[15]
|
Leva P. D., Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters, J. Biomechanics, Vol. 29, No. 9, p p. 1223-1230, 1996.
|
[16]
|
Anderson B. D. O., Moore J. B., Optimal control linear quadratic methods, Dover Publication, Inc. Mineola, New York, Feb. 2007.
|
[17]
|
Byoung G. L. and Jacob R., Kinematic analysis of 7 degrees of freedom upper-limb exoskeleton robot with tilted shoulder abduction, Int. Jour. of Precision Engineering and Manufacturing, Vol. 14, No. 1, pp. 69-76, 2013.
|
[18]
|
Gopura R. A. R. C. and Kiguchi K., Mechanical designs of active upper-limb exoskeleton robots state-of-the-art and design difficulties, 11th Int. Conf. on Rehabilitation Robotics, Kyoto, Japan, pp. 178- 187, 2009.
|
[19]
|
|
[20]
|