ارتعاشات اجباری میکرو‌لوله حامل جریان سیال واقع بر بستر پسترناک تحت نیروی متحرک و با درنظر گرفتن تئوری گرادیان کرنش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

در این مقاله ارتعاشات اجباری یک میکرو­لوله ویسکوالاستیک حامل سیال، واقع بر بستر پسترناک تحت تاثیر نیروی متحرک هارمونیک بررسی شده است. معادله حرکت میکرولوله حامل سیال به همراه شرایط مرزی، براساس تئوری گرادیان کرنش مرتبه اول و فرضیات تیر اویلر-برنولی با استفاده از اصل توسعه یافته همیلتون استخراج می­شود. رفتار ویسکوالاستیک میکرولوله با استفاده از تئوری ویسکوالاستیک خطی کلوین-ویت مدل­سازی شده است. معادله دیفرانسیل حاکم با بکارگیری روش گالرکین به یک سیستم از معادله دیفرانسیل معمولی در حوزه زمان تبدیل می­شود و نتایج عددی با استفاده از روش مربعات دیفرانسیلی برای یک میکرولوله با شرایط مرزی دو­سر­مفصل و دو­سر­گیردار بدست آمده است. در این مطالعه تاثیر تغییرات پارامتر­های مختلف مانند نسبت جرمی، قطر میکرو­لوله، مدول بستر پسترناک و وینکلر و تاثیر شرایط مرزی مختلف بر تغییر مکان بی­بعد شده میکرولوله ویسکوالاستیک، بررسی شده است. مقایسه نتایج بدست آمده از روش مربعات دیفرانسیلی با روش رانگ کوتا مرتبه چهار، بیانگر دقت خوب روش عددی مربعات دیفرانسیلی در حل این­گونه مسائل می­باشد. همچنین نتایج با آنچه قبلا در مطالعات پیشین گزارش شده است در تطابق خوبی می­باشد.

کلیدواژه‌ها


[1]   Eringen A. C., Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972.
[2]   Lam D., Yang F., Chong A., Wang J. and Tong P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003.
[3]   Rinaldi S., Prabhakar S., Vengallatore S. and Païdoussis M. P., Dynamics of microscale pipes containing internal fluid flow: Damping, frequency shift, and stability, Journal of Sound and Vibration, Vol. 329, No. 8, pp. 1081-1088, 2010.
[4]   Lee H.-L. and Chang W.-J., Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, Journal of Applied Physics, Vol. 103, No. 2, pp. 024302, 2008.
[5]   Reddy C., Lu C., Rajendran S. and Liew K., Free vibration analysis of fluid-conveying single-walled carbon nanotubes, Applied Physics Letters, Vol. 90, No. 13, pp. 133122, 2007.
[6]   Wang L., Ni Q., Li M. and Qian Q., The thermal effect on vibration and instability of carbon nanotubes conveying fluid, Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, No. 10, pp. 3179-3182, 2008.
[7]   Yan Y., Wang W. and Zhang L., Noncoaxial vibration of fluid-filled multi-walled carbon nanotubes, Applied Mathematical Modelling, Vol. 34, No. 1, pp. 122-128, 2010.
[8]   Yoon J., Ru C. and Mioduchowski A., Vibration and instability of carbon nanotubes conveying fluid, Composites Science and Technology, Vol. 65, No. 9, pp. 1326-1336, 2005.
[9]   Natsuki T., Ni Q.-Q. and Endo M., Wave propagation in single-and double-walled carbon nanotubes filled with fluids, Journal of applied physics, Vol. 101, No. 3, pp. 034319, 2007.
[10] Fleck N., Muller G., Ashby M. and Hutchinson J., Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, Vol. 42, No. 2, pp. 475-487, 1994.
[11] McFarland A. W. and Colton J. S., Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, Vol. 15, No. 5, pp. 1060-1080, 2005.
[12] Stölken J. and Evans A., A microbend test method for measuring the plasticity length scale, Acta Materialia, Vol. 46, No. 14, pp. 5109-5115, 1998.
[13] Yang F., Chong A., Lam D. and Tong P., Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2731-2743, 2002.
[14] Şimşek M. and Reddy J., Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, International Journal of Engineering Science, Vol. 64, No.1, pp. 37-53, 2013.
[15] Şimşek M., Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Composite Structures, Vol. 92, No. 4, pp. 904-917, 2010.
[16] Kong S., Zhou S., Nie Z. and Wang K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, Vol. 47, No. 4, pp. 487-498, 2009.
[17] Wang C., Zhang Y., Ramesh S. S. and Kitipornchai S., Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics, Vol. 39, No. 17, pp. 3904-3920, 2006.
[18] Reddy J., Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, Vol. 45, No. 2, pp. 288-307, 2007.
[19] Mahmoud F., Eltaher M., Alshorbagy A. and Meletis E., Static analysis of nanobeams including surface effects by nonlocal finite element, Journal of mechanical science and technology, Vol. 26, No. 11, pp. 3555-3563, 2012.
[20] Wang C., Zhang Y. and He X., Vibration of nonlocal Timoshenko beams, Nanotechnology, Vol. 18, No. 10, pp. 105-121, 2007.
[21] Ji B., Chen W. and Zhao J., Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity, Acta Mechanica Sinica, Vol. 25, No. 3, pp. 381-387, 2009.
[22] Misiurek K. and Sniady P., Vibration of sandwich beam due to a moving force, Composite Structures, Vol. 104, No. 1, pp. 85‐93, 2013.
[23] Sung Y. G., Modelling and control with piezoactuators for simply supported beam under moving mass, Journal of Sound and Vibration, Vol. 250, No. 4, pp. 617-626, 2002.
[24] Tajalli S., Rahaeifard M., Kahrobaiyan M., Movahhedy M., Akbari J. and Ahmadian M., Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory, Composite Structures, Vol. 102, No. 1, pp. 72-80, 2013.
[25] Ansari R., Gholami R., Shojaei M. F., Mohammadi V. and Sahmani S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composite Structures, Vol. 100, No.1, pp. 385-397, 2013.
[26] Ghorbanpour Arani A., Amir S., Dashti P. and Yousefi M., Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect, Computational Materials Science, Vol. 86, No. 1, pp. 144-154, 2014.
[27] Wang L., Size-dependent vibration characteristics of fluid-conveying microtubes, Journal of Fluids and Structures, Vol. 26, No. 4, pp. 675-684, 2010.
[28] Mindlin R. and Eshel N., On first strain-gradient theories in linear, elasticity International Journal of Solids and Structures, Vol. 4, No. 1, pp. 109-124, 1968.
[29] Benjamin T. B., Dynamics of a system of articulated pipes conveying fluid. I. Theory, in Proceeding of, The Royal Society, Vol. 21, No. 1, pp. 457-486, 1997.
[30] Ghavanloo E. and Fazelzadeh S. A., Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid, Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, No. 1, pp. 17-24, 2011.
[31] Bellman R. and Casti J., Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, Vol. 34, No. 2, pp. 235-238, 1971.
[32] Bert C. W. and Malik M., Differential quadrature method in computational mechanics: a review, Applied Mechanics Reviews, Vol. 49, No. 1, pp. 1-28, 1996.
[33] Khalili S., Jafari A. and Eftekhari S., A mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads, Composite Structures, Vol. 92, No. 10, pp. 2497-2511, 2010.
[34] Şimşek M., Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, International Journal of Engineering Science, Vol. 48, No. 12, pp. 1721-1732, 2010.