[1] Fung Y.C., Biomechanics: mechanical properties of living tissues, Springer-Verlag, New York, 1981.
[2] Fung Y.C., Biomechanics: mechanical properties of living tissues, Springer-Verlag, New York, 1993.
[3] Hochmuth R.M., Properties of red blood cells, In Handbook of Bioengineering, eds. R. Skalak & S. Chien., McGraw Hill Book Company, New York 1987.
[4] Pries A.R., SecombT.W., Gaehtgens P., Biophysical aspects of blood flow in the microvasculature, Vol. 32, pp. 654-667, 1996.
[5] Popel A.S., Johnson P.C., Microcirculation and hemorheology, Annu. Rev. Fluid Mech., Vol. 37, pp. 43-69, 2005.
[6] Du Q., Liu C., Wang X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., Vol. 212, No. 2, pp. 757-777, 2006.
[7] BibenT., Misbah C., Tumbling of vesicles under shear flow within an advected-field approach, Phys. Rev. E, Vol. 67, 031908, 2003.
[8] Maitre E., Misbah C., Peyla P., Raoult, A., Comparison between advected-field and level-set methods in the study of vesicle dynamics, Physica D: Nonlinear Phenomena, Vol. 241, No. 13, pp. 1146-1157, 2012.
[9] Faivre M., Abkarian M., Bickraj K., and Stone A., Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma, Biorheology, Vol. 43, pp. 147-159, 2006.
[10] Kang M., Ji H.S., and Kim K.C., In-vivo investigation of RBC’s flow characteristics and hemodynamics feature through a microchannel with a micro-stenosis, International Journal of Biology and Biomedical Engineering, Vol. 2, No. 1, pp. 1-8, 2008.
[11] Fujiwara H., Ishikawa T., Lima R., Matsuki, N., Imai Y., Kaji H., Nishizawa M., Yamaguchi T., Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel, Journal of Biomechanics, Vol. 42, No. 7, pp. 838-843, 2009.
[12] Eggleton C.D., Popel A.S., Large deformation of red blood cell ghosts in a simple shear flow, Phys. Fluids, Vol. 10, pp. 1834-1845, 1998.
[13] Pozrikidis C., Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow, J. Fluid Mech, Vol. 297, pp. 123-152, 1995.
[14] Zhao H., Isfahani A.H.G., Olson L.N., and Freund J. B., A spectral boundary integral method for flowing blood cells, Journal of Computational Physics, Vol. 229, pp. 3726–3744, 2010.
[15] Sun C., Migliorini C., Munn L.L., Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis, J. Biophys, Vol. 85, pp. 208–222, 2003.
[16] Sun C., Munn L.L., "Particulate nature of blood determines macroscopic rheology, A 2-D lattice Boltzmann analysis, J. Biophys, Vol. 88, pp. 1635–1645, 2005.
[17] Bagchi, P., Mesoscale simulation of blood flow in small vessels, J. Biophys., Vol. 92, pp. 858–877, 2007.
[18] Delouei A. A., Nazari M., Kayhani M.H., Succi S., Immersed boundary-thermal lattice Boltzmann methods for non-Newtonian flows over a heated cylinder: a comparative study, Communications in Computational Physics, Vol. 18, No. 02, pp. 489-515, 2015.
[19]
Delouei A. A.,
Nazari M.,
Kayhani M.H.,
Ahmadi G., A non-Newtonian direct numerical study for stationary and moving objects with various shapes: an immersed boundary-Lattice Boltzmann approach, Journal of Aerosol Science Vol. 93, pp. 45-62, 2016.
[20] Shahmardan M. M., Sedaghat M. H., Norouzi M., Nazari M., Immersed boundary-lattice Boltzmann method for simulation of muco-ciliary transport: effect of mucus depth at various amounts of cilia beat frequency, IOP Conference Series: Materials Science and Engineering, Vol. 100, No. 1, IOP Publishing, 2015.
[22]
Delouei, A.A.,
Nazari M.,
Kayhani M.H.,
Kang S.K.,
Succid S., Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach, Physica A: Statistical Mechanics and its Applications, Vol. 447, pp. 1-20, 2016.
[23] Zhang J., Johnson P.C., Popel A.S., An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Phys. Biol, Vol. 4, pp. 285–295, 2007.
[24] Zhang J., Johnson P.C., Popel A. S., Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method, J. Biomech., Vol. 41, pp. 47–55, 2008.
[25] Zhang J., Johnson P.C., Popel A.S., Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows, Microvasc. Res., Vol. 77, pp. 265-272, 2009.
[26] Wang T., Xing Z., Characterization of blood flow in capillaries by numerical simulation, Journal of Modern Physics, pp. 335-349, 2010.
[27] Xiong W., Zhang J., Shear stress variation induced by red blood cell motion in microvessel, Ann. Biomed. Eng., Vol. 38, pp. 2649-2659, 2010.
[28] Navidbakhsh M., Rezazadeh M., An immersed boundary-lattice Boltzmann model for simulation of malaria-infected red blood cell in micro-channel, Scientia Iranica, Vol. 19, No. 5, pp. 1329-1336, 2012.
[29] Dadvand A., Baghalnezhad M., Mirzaee I., Khoo B.C., Ghoreishi S., An immersed boundary–lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows, Journal of Computational Science, Vol. 5, No. 5, pp. 709-718, 2014.
[30] Alizadeh A., Dadvand A., Simulation of the dynamics of an elastic membrane in a grooved channel using a combined lattice Boltzmann-immersed boundary method, Modares Mechanical Engineering, Vol. 15, No. 10, pp. 88-98, 2015.
[31] Peskin C.S., Flow patterns around heart valves, a digital computer method for solving the equations of motion, PhD Thesis, Physiology, Albert Einstein College of Medicine, Univ. Microfilms, Vol. 378, pp. 72-80, 1972.
[32] Kim J., Kim D., Choi H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., Vol. 171, No. 1, pp. 132-150, 2001.
[33] Taira K., Colonius T., The immersed boundary method, a projection approach, J. Comput. Phys., Vol. 225, pp. 2118–2137, 2007.
[34] Pinelli A., Naqavi I.Z., Piomelli U., Favier J., Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers, J. Comput. Phys., Vol. 229, No. 24, pp. 9073–9091, 2010.
[35] Wu J., Shu C., An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows, Journal of Computational Physics, Vol. 229, pp. 5022–5042, 2010.
[36] Mohamad A.A., Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes, New York, Springer, 2011.
[37] Fung Y.C., Biomechanics, Mechanical Propertis of Living Tissues, 2nd Ed. Springer, NewYork, 1993.
[38] Evans E.A., Fung Y.C., Improved measurements of the erythrocyte geometry, Microvascular Research, Vol. 4, No. 4, pp. 335-347, 1972.
[39] Hochmuth R.M., Waugh R.E., Erythrocyte membrane elasticity and viscosity, AnnualReview of Psychology, Vol. 49 , pp. 209-219, 1987.
[40] Evans E.A., Bending elastic modulus of red blood cell membrane derived from buckling in micropipette aspiration tests, Biophys. J., Vol. 43, No. 1, pp. 27-30, 1983.
[41] Zhu L., He G., Wang S., Miller L., Zhang X., You Q., Fang S., An immersed boundary method based on the lattice Boltzmann approach in three dimensions with application, Computers and Mathematics with Applications, Vol. 61, No. 12, pp. 3506-3518, 2011.
[42] Peskin C.S., The immersed boundary method, Acta Numerica, pp. 479-517, 2002.
[43] Zhang J., Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels, Microcirculation, Vol.18, No.7, pp. 562-573, 2011.
[44] Fedosov D.A., Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation, Proceedings of the National Academy of Sciences, Vol. 108, No. 1 , pp. 35-39, 2011.
[45] Fischer T., Schmid-Schonbein H., Tank treading motion of red blood cell membranes in viscometric flow, Behavior of intracellular and extracellular markers, Blood Cells. Vol. 3, pp. 351-365, 1977.
[46] Fischer T., Stohr-Lissen M., Schmid-Schonbein H., The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science 202, No. 4370, pp. 894-896, 1978.
[47] Gaehtgens P., Schmid-Schönbein H., Mechanisms of dynamic flow adaptation of mammalian erythrocytes, Naturwissenschaften, Vol. 69, No. 6, pp. 294-296, 1982.
[48] Hosseini S.M., Feng J.J., A particle-based model for the transport of erythrocytes in capillaries, Chem. Eng. Sci, Vol. 64, pp. 4488–4497, 2009.
[49] Pozrikidis C., Numerical simulation of the flow-induced deformation of red blood cells, Ann. Biomed. Eng., Vol. 37, pp. 1194-1205, 2003.
[50] Tsubota K.,Wada S., Elastic force of red blood cell membrane during tank- treading motion, Consideration of the membrane’s natural state, Phys. Rev. E, Vol. 81, 011910, 2010.
[51] Pozrikidis C., Computational Hydrodynamics of Capsules and Biological Cells, CRC press, 2010.
[52] Secomb T.W., Styp-Rekowska B., Pries A.R., Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
Annals of Biomedical Engineering, Vol. 35, pp. 755-765, 2007.
[53] Xiong W., Zhang J., Shear stress variation induced by red blood cell motion in microvessel, Annals of biomedical engineering, Vol. 38, No. 8, pp. 2649-2659, 2010.
[54] Ma G., Hua J., Li H., Numerical modeling of the behavior of an elastic capsule in a microchannel flow, The initial motion, Physical Review E, Vol. 79, No.4, pp. 046710-046717, 2009.