تحلیل سه بعدی کمانش مکانیکی و گرمایی پوسته‌های استوانه‌ای هدفمند دو بعدی با روش میانیابی شعاعی نقطه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه محقق اردبیلی، دانشکده مهندسی مکانیک

2 استاد، دانشگاه گیلان، دانشکده مهندسی مکانیک

3 دانشیار، دانشگاه گیلان، دانشکده مهندسی مکانیک

چکیده

در این مقاله کمانش خطی پوسته های استوانه ای جدار ضخیم تحت بار فشاری خارجی و جدار نازک تحت بار گرمایی با استفاده از تئوری سه بعدی الاستیسیته مورد بررسی قرار گرفته است. پوسته بصورت هدفمند دو بعدی در جهات شعاعی و محوری در نظر گرفته شده که خواص آن با استفاده از مدل موری-تاناکا با تغییر مختصات­های ضخامت و طول پوسته تغییر می­کند. جهت حل معادلات حاکم از روش بدون المان با میانیابی شعاعی نقطه ای استفاده شده است. از دو نوع توزیع یکنواخت و خطی اختلاف دما در جهت ضخامت برای تحلیل کمانش گرمایی استفاده شده است. تاثیر توزیع مختلف فازهای ماده هدفمند در دو جهت شعاعی و محوری و شرایط مرزی روی بار کمانش فشاری و گرمایی و همچنین تأثیر گرما روی بار کمانش فشاری بررسی شده است. نتایج حاصل شده با نتایج مقالات ارائه شده در این زمینه مقایسه شده که نشان از دقت بالای روش مورد استفاده می‌باشد.

کلیدواژه‌ها


[1] Kardomateas, G.A. ''Elasticity Solutions for the Buckling of Thick Composite and Sandwich Cylindrical Shells Under External Pressure'', Major Accomplishments in Composite Materials and Sandwich Structures, pp. 339-363, 2010. [2] Kardomateas, G.A. ''Benchmark three-dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells'', composite parts B 27B, pp.569-580, 1996. [3] Ye, J. ''Three dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels'', solids and structures,vol. 32, No 13, pp. 1949-1962, 1994. [4] Mandal, P., Calladine, C.R. ''Buckling of thin cylindrical shells under axial compression'', Solids and Structures,vol. 37, pp. 4509-4525, 2000. [5] Papadakis, G. ''Buckling of thick cylindrical shells under external pressure :A new analytical expression for the critical load and comparison with elasticity solutions'', Solids and Structures, vol. 45, pp. 5308–5321, 2008. [6]Dennis, S.T., Palazotto, A.N. ''Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory'', AIAA,vol. 27, No 10, pp. 1441, 1996. [7] Eslami, M. R., Shahsiah, R. ''Thermal buckling of imperfect cylindrical shells'', Thermal Stresses, vol. 24, pp. 71-89, 2001. [8] Mirzavand, B., Eslami, M.R. ''thermal buckling of imperfect functionally graded cylindrical shells based on the wan––Donnell Model'', Thermal Stresses, vol. 29, pp. 37-55, 2006. [9] Kansa, E.J. ''Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. I: Surface approximations and partial derivative estimates'', Computers and Mathematics with Applications, vol. 19, pp. 127–145, 1990. [10] Kansa, E.J. ''Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. II: Solutions to parabolic, hyperbolic and elliptic partial differential equations'', Computers and Mathematics with Applications,vol. 19, pp. 147–161, 1990. [11] Hon, Y.C., Wu, Z.M. ''A quasi-interpolation method for solving stiff ordinary differential equations'', International Journal of Numerical Methods in Engineering, vol. 48, pp. 1187–1197, 2000. [12] Hon, Y., Lu, M., Xue, W., Zhu, Y. ''Multiquadric method for the numerical solution of a biphasic model'', Applied Mathematics and Computation, vol. 88, pp. 153–175, 1997. [13] Hon, Y., Lu, M., Xue, W., Zhou, X. ''Numerical algorithm for triphasic model of charged and hydrated soft tissues'', Computational Mechanics,vol. 29, pp.1–15, 2002. [14] Liu, G., Gu, Y. ''A point interpolation method for two-dimensional solids'', Numerical Methods in Engineering, vol. 50, pp. 937–951, 2001. [15] Wang, G., Liu, G. ''A point interpolation meshless method based on radial basis functions'', Numerical Methods in Engineering, vol. 54, pp. 1623–1648, 2002. [16] Wang, J., Liu, G. ''On the optimal shape parameters of radial basis functions used for 2-D meshless methods'', Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 2611–2630, 2002. [17] Pilafkan, R., Folkow, P.D., Darvizeh, M., Darvizeh, A. ''Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method(RPIM)'', European Journal of Mechanics A/Solids, vol. 39, pp. 26-34, 2013. [18] Liew, K.M., Chen, X.L. ''Mesh-free radial point interpolation method for the buckling analysis of Mindlin plates subjected to in-plane point loads'', Numerical Methods in Engineering, vol. 60, pp. 1861–1877, 2004. [19] Birman, V., Byrd, L.W. ''Modeling and analysis of functionally graded materials and structures'', Appl. Mech, vol. 60, pp. 195-216, 2007. [20] Shen, H.S. ''Functionally Graded Materials: Nonlinear Analysis of Plates and Shells'', CRC Press, 2009. [21] Loy, C.T., Lam, K.Y., Reddy, J.N. ''Vibration of functionally graded cylindrical shells'', Int. J. Mech. Sci, vol. 41, pp. 309-324, 1999. [22] Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N. ''Vibration characteristic offunctionally graded cylindrical shells under various boundary conditions'', Appl. Acoust, vol. 61, pp. 111-129, 2000. [23] Kadoli, R., Ganesan, N. ''Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature specified boundary condition'', Sound Vib, vol. 289, pp. 450-480, 2006. [24] Ansari, R., Darvizeh, M. ''Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions'', Compos. Struct, vol. 85, pp. 284-292, 2008. [25] Patel, B.P., Gupta, S.S., Loknath, M.S., Kadu, C.P. ''Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory'', Compos. Struct, vol. 69, pp. 259-270, 2005. [26] Vel, S.S. ''Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells'', Compos. Struct, vol. 92, pp. 2712-2727, 2010. [27] Xu, M., Nowinski, W.L. ''Talairach-Tournoux brain atlas registration using a metal forming principle-based finite element method, mechanical image analysis, vol. 5, pp. 271-279, 2001. [28] Wood, R.D., Schrefler, R. ''Geometrically Non-linear Analysis - A Correlation Of Finite Element Notations'', International Journal For Numerical Methods In Engineering, vol. 12, pp. 635-642, 1978. [29] Wriggers, P. ''Nonlinear finite element methods'', Springer-verlag, Berlin Heidelberg, 2008 [30] Liu, G.R., Gu, Y.T. ''An Introduction to Meshfree Methods and Their Programming'', Springer, 2005. [31] Shen, H.S. ''Functionally graded materials: nonlinear analysis of plates and shells'', CRC Press, 2009. [32] Kardomateas, G.A., Chung, C.B. ''Buckling of thick orthotropic cylindrical shells under external pressure based on non-planar equilibrium modes'', solids and structures, vol. 31, no 16, pp. 2195-2210, 1994. [33] Mirzavand, B., Eslami, M.R. ''Thermal Buckling of Simply Supported Piezoelectric FGM Cylindrical Shells'', Thermal Stresses, vol. 30, no. 11, pp. 1117-1135, 2007. [34] Lanhe, W., Zhiqing, J., Jun, L. ''Thermoelastic stability of functionally graded cylindrical shells'', Composite Structures, vol. 70, pp. 60–68, 2005.