[1] Kardomateas, G.A. ''Elasticity Solutions for the Buckling of Thick Composite and Sandwich Cylindrical Shells Under External Pressure'', Major Accomplishments in Composite Materials and Sandwich Structures, pp. 339-363, 2010. [2] Kardomateas, G.A. ''Benchmark three-dimensional elasticity solutions for the buckling of thick orthotropic cylindrical shells'', composite parts B 27B, pp.569-580, 1996. [3] Ye, J. ''Three dimensional buckling analysis of laminated composite hollow cylinders and cylindrical panels'', solids and structures,vol. 32, No 13, pp. 1949-1962, 1994. [4] Mandal, P., Calladine, C.R. ''Buckling of thin cylindrical shells under axial compression'', Solids and Structures,vol. 37, pp. 4509-4525, 2000. [5] Papadakis, G. ''Buckling of thick cylindrical shells under external pressure :A new analytical expression for the critical load and comparison with elasticity solutions'', Solids and Structures, vol. 45, pp. 5308–5321, 2008. [6]Dennis, S.T., Palazotto, A.N. ''Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory'', AIAA,vol. 27, No 10, pp. 1441, 1996. [7] Eslami, M. R., Shahsiah, R. ''Thermal buckling of imperfect cylindrical shells'', Thermal Stresses, vol. 24, pp. 71-89, 2001. [8] Mirzavand, B., Eslami, M.R. ''thermal buckling of imperfect functionally graded cylindrical shells based on the wan––Donnell Model'', Thermal Stresses, vol. 29, pp. 37-55, 2006. [9] Kansa, E.J. ''Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. I: Surface approximations and partial derivative estimates'', Computers and Mathematics with Applications, vol. 19, pp. 127–145, 1990. [10] Kansa, E.J. ''Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. II: Solutions to parabolic, hyperbolic and elliptic partial differential equations'', Computers and Mathematics with Applications,vol. 19, pp. 147–161, 1990. [11] Hon, Y.C., Wu, Z.M. ''A quasi-interpolation method for solving stiff ordinary differential equations'', International Journal of Numerical Methods in Engineering, vol. 48, pp. 1187–1197, 2000. [12] Hon, Y., Lu, M., Xue, W., Zhu, Y. ''Multiquadric method for the numerical solution of a biphasic model'', Applied Mathematics and Computation, vol. 88, pp. 153–175, 1997. [13] Hon, Y., Lu, M., Xue, W., Zhou, X. ''Numerical algorithm for triphasic model of charged and hydrated soft tissues'', Computational Mechanics,vol. 29, pp.1–15, 2002. [14] Liu, G., Gu, Y. ''A point interpolation method for two-dimensional solids'', Numerical Methods in Engineering, vol. 50, pp. 937–951, 2001. [15] Wang, G., Liu, G. ''A point interpolation meshless method based on radial basis functions'', Numerical Methods in Engineering, vol. 54, pp. 1623–1648, 2002. [16] Wang, J., Liu, G. ''On the optimal shape parameters of radial basis functions used for 2-D meshless methods'', Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 2611–2630, 2002. [17] Pilafkan, R., Folkow, P.D., Darvizeh, M., Darvizeh, A. ''Three dimensional frequency analysis of bidirectional functionally graded thick cylindrical shells using a radial point interpolation method(RPIM)'', European Journal of Mechanics A/Solids, vol. 39, pp. 26-34, 2013. [18] Liew, K.M., Chen, X.L. ''Mesh-free radial point interpolation method for the buckling analysis of Mindlin plates subjected to in-plane point loads'', Numerical Methods in Engineering, vol. 60, pp. 1861–1877, 2004. [19] Birman, V., Byrd, L.W. ''Modeling and analysis of functionally graded materials and structures'', Appl. Mech, vol. 60, pp. 195-216, 2007. [20] Shen, H.S. ''Functionally Graded Materials: Nonlinear Analysis of Plates and Shells'', CRC Press, 2009. [21] Loy, C.T., Lam, K.Y., Reddy, J.N. ''Vibration of functionally graded cylindrical shells'', Int. J. Mech. Sci, vol. 41, pp. 309-324, 1999. [22] Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N. ''Vibration characteristic offunctionally graded cylindrical shells under various boundary conditions'', Appl. Acoust, vol. 61, pp. 111-129, 2000. [23] Kadoli, R., Ganesan, N. ''Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature specified boundary condition'', Sound Vib, vol. 289, pp. 450-480, 2006. [24] Ansari, R., Darvizeh, M. ''Prediction of dynamic behaviour of FGM shells under arbitrary boundary conditions'', Compos. Struct, vol. 85, pp. 284-292, 2008. [25] Patel, B.P., Gupta, S.S., Loknath, M.S., Kadu, C.P. ''Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory'', Compos. Struct, vol. 69, pp. 259-270, 2005. [26] Vel, S.S. ''Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells'', Compos. Struct, vol. 92, pp. 2712-2727, 2010. [27] Xu, M., Nowinski, W.L. ''Talairach-Tournoux brain atlas registration using a metal forming principle-based finite element method, mechanical image analysis, vol. 5, pp. 271-279, 2001. [28] Wood, R.D., Schrefler, R. ''Geometrically Non-linear Analysis - A Correlation Of Finite Element Notations'', International Journal For Numerical Methods In Engineering, vol. 12, pp. 635-642, 1978. [29] Wriggers, P. ''Nonlinear finite element methods'', Springer-verlag, Berlin Heidelberg, 2008 [30] Liu, G.R., Gu, Y.T. ''An Introduction to Meshfree Methods and Their Programming'', Springer, 2005. [31] Shen, H.S. ''Functionally graded materials: nonlinear analysis of plates and shells'', CRC Press, 2009. [32] Kardomateas, G.A., Chung, C.B. ''Buckling of thick orthotropic cylindrical shells under external pressure based on non-planar equilibrium modes'', solids and structures, vol. 31, no 16, pp. 2195-2210, 1994. [33] Mirzavand, B., Eslami, M.R. ''Thermal Buckling of Simply Supported Piezoelectric FGM Cylindrical Shells'', Thermal Stresses, vol. 30, no. 11, pp. 1117-1135, 2007. [34] Lanhe, W., Zhiqing, J., Jun, L. ''Thermoelastic stability of functionally graded cylindrical shells'', Composite Structures, vol. 70, pp. 60–68, 2005.