بررسی انتشار موج در یک نانوتیر دوار ویسکوالاستیک کلوین‌-‌ویت به روش غیرمحلی عمومی با درنظر گرفتن اثرات بستر الاستیک

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در این مقاله به بررسی جامعِ انتشار موج در یک نانوتیر دوار ویسکوالاستیک که در بر روی یک بستر ویسکوالاستیک نیز قرار گرفته، پرداخته شده‌است. در مطالعه حاضر از روش غیرمحلی عمومی به جهت قابلیت آن در انعکاس رفتارهای نرم شونده و سفت شونده مواد مختلف که نقش بسزایی در افزایش دقت تحلیل انتشار موج در یک ماده دارد، استفاده شده‌است. برای این منظور، ابتدا با توجه به نظریه تیر تیموشنکو و مدل ویسکوالاستیک سازه ای کلوین-ویت و استفاده از روش همیلتن، معادلات حرکت نانوتیر بر روی بستر ویسکو الاستیکِ وینکلر-پاسترنیک استخراج گردیده و سپس به کمک روش تحلیلی نتایج عددی لازم برای تحلیل انتشار موج طولی، پیچشی و عرضی محاسبه شده اند. بدلیل ماهیت نظریه غیرمحلی عمومی و برخلاف نظریه غیرمحلی ارینگن، معادلات حرکت استخراج شده شامل دو فاکتور غیرمحلی برای تخمین صحیح رفتار انتشار موج می‌باشد. همچنین تاثیر اثرات فاکتورهای غیرمحلی، سرعت زاویه ای دوران نانوتیر دوار و ضرایب استهلاک سازه و بستر بر روی فرکانس‌های انتشار انواع موج به ویژه امواج پیچشی و عرضی مورد بررسی جامع قرار گرفته است.

کلیدواژه‌ها

موضوعات


  • Hassanzadeh, K., Farughi, S. Longitudinal vibrations of functionally graded material Nano-rod based on nonlocal strain gradient theory. Journal of Mechanical Engineering, Vol. 51, No.2, pp. 41-50, 2021.
  • Nazemizadeh, M., Saffari, H. Vibration Analysis of Mass Sensing Nanobeams at Higher Modes with Consideration of Size Effects in Nano-Scales. Journal of Mechanical Engineering, Vol. 51, No.1, pp. 247-255, 2021.
  • Kocaturk, T., S.D. Akbas, Wave propagation in a microbeam based on the modified couple stress theory. Structural Engineering and Mechanics, Vol. 46, No.3, pp. 417-431, 2013.
  • Ebrahimi, F., M.R. Barati, Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory. Journal of Thermal Stresses, Vol. 39, No.12, pp. 1560-1571, 2016.
  • Li, L., Y. Hu, and L. Ling, Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Composite Structures, Vol. 133, pp. 1079-1092, 2015.
  • Ma L-H, Ke L-L, Wang Y-Z, Wang Y-S., Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models. Physica E: Low-dimensional Systems and Nanostructures, Vol. 86, pp. 253-261, 2017.
  • Akbarzadeh Khorshidi, M., M. Shariati, An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory. Waves in Random and Complex Media, 2016. 26(2): p. 243-258.
  • Kiani K., Application of nonlocal higher-order beam theory to transverse wave analysis of magnetically affected forests of single-walled carbon nanotubes. International Journal of Mechanical Sciences, 138, pp. 1-16, 2018.
  • Ebrahimi F., Haghi P., Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory. Acta Mechanica Solida Sinica, 30, pp. 647-657, 2017.
  • Ebrahimi F., Dabbagh A., Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. The European Physical Journal Plus, Vol. 132, No.11, pp. 1-14, 2017.
  • Ebrahimi F., Seyfi A., Dabbagh A., A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams. The European Physical Journal Plus, 134, No.5, pp. 1-11, 2019.
  • Karami B., Shahsavari D., Janghorban M., Dimitri R., Tornabene F., Wave propagation of porous nanoshells. Nanomaterials, 9, No.1, pp. 1-19, 2019.
  • Masoumi A., Amiri A., Talebitooti R., Flexoelectric effects on wave propagation responses of piezoelectric nanobeams via nonlocal strain gradient higher order beam model. Materials Research Express. Vol. 6, No.10, pp. 50-55, 2019.
  • Wang YQ., Liang C., Wave propagation characteristics in nanoporous metal foam nanobeams. Results in Physics, 12, pp. 287-297, 2019.
  • Sobhy M., Zenkour AM., Wave propagation in magneto-porosity FG bi-layer nanoplates based on a novel quasi-3D refined plate theory. Waves in Random and Complex Media, 31, No. 5, pp. 921-941, 2021.
  • Arani AG., Pourjamshidian M., Arefi M., Arani M., Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress. Smart Structures and Systems, 23, No. 2, pp. 141-153, 2019.
  • Ebrahimi F., Dabbagh A., Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory. Waves in Random and Complex Media, 30, No. 1, pp. 157-176, 2020.
  • Cao DY., Wang YQ., Wave dispersion in viscoelastic lipid nanotubes conveying viscous protein solution. The European Physical Journal Plus, 135, No. 1, pp. 1-14, 2020.
  • Faroughi S., Rahmani A., Friswell M., On wave propagation in two-dimensional functionally graded porous rotating nano beams using a general nonlocal higher-order beam model. Applied Mathematical Modelling, 80, pp. 169-190, 2020.
  • Rahmani A., Safaei B., Qin Z., On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory. Engineering with Computers, pp. 1-21, 2021.
  • Shaat M., A general nonlocal theory and its approximations for slowly varying acoustic waves. International Journal of Mechanical Sciences, 130, pp. 52-63, 2017.
  • Shaat M., Abdelkefi A., New insights on the applicability of Eringen’s nonlocal theory. International Journal of Mechanical Sciences, Vol. 121, pp. 67-75, 2017.