مقایسه تاثیر عملیات حرارتی کوئنچ - بخش بندی (Q-P) و تریپ (TRIP) بر ریزساختار و خواص مکانیکی یک فولاد استحکام بالای حاوی میکرو آلیاژ Ti

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مواد، دانشگاه تبریز، تبریز، ایران

2 استاد، گروه مهندسی مواد، دانشگاه تبریز، تبریز، ایران

3 استادیار، گروه مهندسی مواد، دانشگاه تبریز، تبریز، ایران

چکیده

عملیات حرارتی تریپ (TRIP ) و کوئنچ- بخش بندی (Q-P ) از مهمترین روش های تولیدی فولادهای پیشرفته با استحکام بالا (AHSS ) است. اصول عملیات حرارتی مذکور مبتنی بر نفوذ کربن از مارتنزیت به آستنیت باقیمانده (γ_R) و پایدارسازی γ_R است. در پژوهش حاضر، یک فولاد استحکام بالا حاوی میکروآلیاژ Ti تحت عملیات حرارتی Q-P، TRIP و کوئنچ - برگشت (Q-T ) قرار گرفته و از لحاظ ریزساختار و خواص مکانیکی مورد مقایسه قرار گرفته است. مقایسه تاثیر عملیات های مذکور بر ریزساختار و خواص مکانیکی فولاد توسط میکروسکوپ الکترونی روبشی(SEM) ، آنالیز اشعه ایکس (XRD)، ریزسختی‌سنجی و متالوگرافی انجام شد. نتایج بدست آمده نشان داد که نمونه ای که تحت عملیات Q-P قرار گرفته است، شکل پذیری و استحکام بهتری نسبت به TRIP دارد. استحکام و شکل پذیری نمونه حاصل از Q-P به ترتیب MPa 1070 و 24 درصد گزارش شد. استحکام و شکل پذیری نمونه حاصل از TRIP نیز به ترتیب MPa‌1160 و 19 درصد گزارش شد.

کلیدواژه‌ها

موضوعات


[1] Edmonds D., He K., Rizzo F., De Cooman B., Matlock D., and Speer J., Quenching and partitioning martensite—A novel steel heat treatment, Materials Science and Engineering A, 2006,pp. 438-440, pp. 25-34. Https://10.1016/J.MSEA.2006.02.133
[2] Fonstein N., Advanced High Strength Sheet Steels: Physical  Metallurgy, Design, Processing, and Properties. 2015.
[3] Hayami S. and Furukawa T., A family of high-strength cold-rolled steels, in Union Carbide Corporation, pp. 311-321, 1975.
[4] Hall J., Evolution of advanced high strength steels in automotive applications, Presentation at Joint Policy Council, Auto/Steel Partnership 18. 2011.
[5] Bouaziz O., Huang M., Driving Force, Logic of development of advanced high strength steels for automotive applications. Steel Research International, 2013, 10 (1) pp. 937-947. Https://10.1002/srin.201200288
[6] Bhattacharya D., Microalloyed Steels for the Automotive Industry. Technology in Metallurgy, Materials and Mining, 2014, 11(4) p. 371-383. Https://10.4322/tmm.2014.052
[7] Matlock D. KSpeer., J. G., Third generation of AHSS: microstructure design concepts, in Microstructure and texture in steels, 2009, 1(1) pp. 185–205. Https://10.1007/978-1-84882-454-6_11
[8] E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, J.G. Speer,Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall. Mater.Trans. A.  2008, 39, 2586–2589. Https://10.1007/s11661-008-9609-z
[9] Santofimia M.J., Zhao L., Sietsma J., Model for the interaction between interface migration and carbon diffusion during annealing of martensite–austenite microstructures in steels. Scr. Mater. 2008, 59 (1) 159–162.. Https://10.1016/j.scriptamat.2008.02.045
[10] Santofimia M.J., Speer J.G., Clarke A.J., Zhao L., Sietsma J., Influence of interface mobility on the evolution of austenite– martensite grain assemblies during annealing. Acta Materellia. 2009, 57(1) 4548-4557.  Https://10.1016/J.ACTAMAT.2009.06.024
[11] Takahama Y., Santofimia M.J., Mecozzi M.G., Zhao L., Sietsma J., Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel. Acta Materialia. 60, 2916–2926. 20. Https://10.1016/j.actamat.2012.01.055
[12] Xinping M., Titanium Microalloyed Steel: Fundamentals, Technology, and Products, Special types of Materials, 2019.
[13] Lomholt T.C., Adachi Y., Peterson J., Steel R., Pantleon K., M.A. Somers, M.A. Microstructure Characterization of Friction Stir Spot Welded TRIP Steel, Advanced Materials Research, 409, pp. 275-280, 2011. Https://10.4028/www.scientific.net/AMR.409.275
[14] Samajdar L., Girault E., Verlinden B., Aernoudt E., Humbeeck J.V., Transformation during Intercritical Annealing of TRIP-assisted Steel, Transactions of ISIJ Internatinal, 1998, 38, pp. 998-1006.  Https://10.2355/isijinternational.38.998
[15] Lee K., Im Y.R., Chin K., Effect of Carbon Content on the Microstructure and Transformation Kinetics of Super Bainitic TRIP Steels, Materials Science and Technology Conference, 1, pp.1785-93, 2008.
 
[16] Wang L., Speer J.G.  , Quenching and Partitioning Steel Heat Treatment, Metallogr. Microstruct. Anal., 2, 268–281, 2013.
[17] Xiong Z., Jacques P., Perlade A., Pardoen T., Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel, Scripta Materialia, 157, 6–9, 2018.
Https://10.1016/j.scriptamat.2018.07.030 
[18] Xia P., Sabirov I., Aldareguia J., Verleysen P., Petrov R., Mechanical behavior and microstructure evolution of a quenched and partitioned steel during drop weight impact and punch testing. Materials Science & Engineering A., 737, 18–26, 2018.
Https://10.1016/j.msea.2018.09.015 
[19] Ebner S., Suppan C., Schnitzer R., Hofer C., Microstructure and mechanical properties of a low C steel subjected to bainitic or quenching and partitioning heat treatments. Materials Science & Engineering A., 735, 1–9, 2018.
Https://10.1016/j.msea.2018.08.026
]20 [گلعذار م  ع،  اصول و کاربرهای عملیات حرارتی فولادها و چدنها. اصفهان، نشر ارکان، 1376.
]21 [شیرعلی ع، هنربخش رئوف ع و بزازبنایی س،1392، بررسی فرایند کوئنچ و بخش بندی روی یک فولادکربن متوسط کم آلیاژ، دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن علمی ریخته‌گری ایران،سمنان. https://civilica.com/doc/224119.
]22 [شیرعلی ع، هنربخش رئوف ع و بزازبنایی س،1393،ریزساختار و خواص مکانیکی یک فولاد پرکربن و کم آلیاژ فراوری شده با فرایند کوئنچ و بخش بندی فصلنامه مهندسی متالورژی و مواد، دوره 26 شماره 1. https://civilica.com/doc/645272.
[23] H.K.D.H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, 3th Edn. Butterworth-Heinemann, Oxford, UK, 2006.
[24] Rowland E.S., Lyle S.R., The application of MS points to case depth measurement, Trans. ASM 37, 27–47,1946.
[25] Htun M.S., S.T.L. Kyaw, K.T. Lwin. Effect of heat treatment on microstructure and mechanical properties of spring steel, Journal of Metals, Materials and Minerals, , 18(1) 191-197, 2008.
[26] ASTM Standards, Standard Practice for X-Ray Determination of Retained Austenite in Steel.
[27] Hosford W. F., Caddell R. M., Metal forming: mechanics and metallurgy,Cambridge: Cambridge University Press, 2011.
[28] ASTME 643-84, Standard Test Method for Ball Punch Deformation of Metallic Sheet Material, Annual Book of ASTME Standards, Section 3, Vol. 03.01, Pp. 885-888, 1989.