[1] Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002 .
[2] Ames Research Staff. Equations, Tables, and Charts for Compressible Flow, NACA Report ۱۱۳۴, ۱۹۴۳
[3] Moeckel WE. Approximate method for predicting form and location of detached shock waves ahead of plane or axially symmetric bodies. InNACA TN D-1921 1949.
[4] Henry JR, Wood CC, Wilbur SW. Summary of subsonic-diffuser data. 1956.
[5] Ferri A, Nucci LM. Theoretical and Experimental Analysis of Low-Drag Supersonic Inlets Having a Circular Cross Section and a Central Body at Mach Numbers of 3.30, 2.75, and 2.45. NACA; 1954.
[6] Seddon J, Goldsmith EL. Intake aerodynamics. Boston: Blackwell science; 1999.
[7] Goldsmith EL, Seddon J, editors. Practical intake aerodynamic design. Amer Inst of Aeronautics; 1993..
[8] Mahoney, J.J. Inlets for Supersonic Missiles, AIAA Education Series, Washington, DC, 1990.
[9] Anderson JD. Modern compressible flow. Tata McGraw-Hill Education; 2003.
[10] Varner MO, Martindale WR, Phares WJ, Kneile KR, Adams Jr JC. Large perturbation flow field analysis and simulation for supersonic inlets.1984.
[11] Zha GC, Smith D, Schwabacher M, Rasheed K, Gelsey A, Knight D, Haas M. High-performance supersonic missile inlet design using automated optimization. Journal of Aircraft. 1997.
[12] Zha GC, Smith D, Schwabacher M, Rasheed K, Gelsey A, Knight D, Haas M. High-performance supersonic missile inlet design using automated optimization. Journal of Aircraft. 1997 Nov;34(6):697-705.
[13] Blaize M, Knight D, Rasheed K. Automated optimal design of two-dimensional supersonic missile inlets. Journal of Propulsion and Power. 1998 Nov;
[14] Lacau RG, Garnero P, Gaible F. Computation of Supersonic Intakes. AGARD Special Course on Missile Aerodynamics. 1994.
[15] Bourdeau C, Carrier G, Knight D, Rasheed K. Three dimensional optimization of supersonic inlets. In35th Joint Propulsion Conference and Exhibit ;1999.
[16] Gaiddon A, Knight DD. Multicriteria design optimization of integrated three-dimensional supersonic inlets. Journal of propulsion and power. 2003 May;19(3):456-63..
[17] Slater, J.W. Design and Analysis Tool for External-Compression Supersonic Inlets, AIAA-۲۰۱۲-۰۰۱۶, ۲۰۱۲.
[18] Slater J. Design and analysis tool for external-compression supersonic inlets. In50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2012.
[19] Slater JW. SUPIN: A computational tool for supersonic inlet design. In54th AIAA Aerospace Sciences Meeting; 2016.
[20] Papila N, Shyy W, Griffin L, Dorney D. Shape optimization of supersonic turbines using response surface and neural network methods. In39th Aerospace Sciences Meeting and Exhibit 2016.
[21] Hacioğlu A. A novel usage of neural network in optimization and implementation to the internal flow systems. Aircraft Engineering and Aerospace Technology;2005.
[22] Ghorbanian K, Gholamrezaei M. An artificial neural network approach to compressor performance prediction. Applied Energy. 2009.
[23] سیدمحمد مدرسزاده، محسن آقاسید میرزابزرگ، مهرداد بزاززاده، بررسی میدان جریان در روتور یک کمپرسور گریز از مرکز و حلزونی آن و اعمال تغییرات لازم برای افزایش راندمان، پایاننامه کارشناسی ارشد رشته مهندسی هوافضا گرایش جلوبرندگی، دانشگاه صنعتی مالک اشتر مجتمع دانشگاهی مکانیک و هوافضا. 1394
[24] Wasserbauer JF, Choby DA. Performance of a bicone inlet designed for Mach 2.5 with internal distributed compression and 40 percent internal contraction; 1972.
[25] Samanich NE. Pressure Drag of Axisymmetric Cowls Having Large Initial Lip Angles at Mach Numbers from 1.90 to 4.90;1959.
[26] Van Wie DM. Scramjet inlets. Scramjet propulsion. 2000.
[27] Sun B, Zhang KY. Empirical equation for self-starting limit of supersonic inlets. Journal of Propulsion and Power. 2010.
[28] Kamali R, Mousavi SM, Khojasteh D. Three-dimensional passive and active control methods of shock wave train physics in a duct. International Journal of Applied Mechanics. 2016.
[29] Mousavi SM, Roohi E. Large eddy simulation of shock train in a convergent–divergent nozzle. International Journal of Modern Physics C. 201.
[30] Kamali R, Mousavi SM, Binesh AR. Three dimensional CFD investigation of shock train structure in a supersonic nozzle. Acta Astronautica. 2015.
[31] Mousavi SM, Roohi E. Three dimensional investigation of the shock train structure in a convergent–divergent nozzle. Acta Astronautica. 2014.
[32] Mousavi SM, Pourabidi R, Goshtasbi-Rad E. Numerical investigation of over expanded flow behavior in a single expansion ramp nozzle. Acta Astronautica. 2018.
[33] Baughman LE, Gould LI. Investigation of Three Types of Supersonic Diffuser Over a Range of Mach Numbers from 1.75 to 2.74. National Advisory Committee for Aeronautics; 1951.