مطالعه‌ی آزمایشگاهی حرکت قطره نفتی از بین سطح مشترک آب-نفت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

2 کارشناس ارشد، گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران

چکیده

امروزه بحث تعامل قطره با سیال از مباحث چالش برانگیز در جریان‌های چند فازی (مایع-مایع) است. در مطالعه‌ی حاضر به بررسی آزمایشگاهی حرکت قطره‌ی نفتی از درون سیال ساکن آب و سپس عبور آن از سطح مشترک آب-نفت پرداخته شده است. برای این منظور از سیستم تصویربرداری و سپس پردازش تصویر استفاده شده است. نفت مورد استفاده، نفت خام سنگین گرفته شده از یکی از چاه‌های نفتی ایران می‌باشد و قطر قطره ی حاصله در محدوده‌ی 2 تا 3 میلی‌متر کنترل شده است. در ابتدا دامنه مقادیر اعداد بدون بعد بدست آمده با داده‌های آزمایشگاهی سایر محققان مقایسه و اعتبارسنجی شده است. نتایج نشان می‌دهد که در شرایط اعمال شده شکل قطره به صورت بیضوی است و با افزایش نسبت ابعاد آن، مقدار عدد وبر کاهش می‌یابد. همچنین تغییرات زمان ماند با قطر قطره از روند یکنواختی پیروی نمی‌کند. در نهایت نیز با مقایسه‌ی نتایج با معادلات تجربی ارائه شده، بهترین رابطه برای پیش‌بینی زمان ماند قطره‌ی نفتی معرفی شده است.

کلیدواژه‌ها

موضوعات


[1] Brakstad OG., Nordtug T. and Throne-Holst M., Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine pollution bulletin. Vol. 93, pp.144-52, 2015.
[2] Tao Z., Bullard S. and Arias C., High numbers of Vibrio vulnificus in tar balls collected from oiled areas of the north-central Gulf of Mexico following the 2010 BP Deepwater Horizon oil spill. Ecohealth, Vol. 8, pp. 507-11, 2011.
[3] Dave D. and Ghaly AE., Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, Vol. 7, pp 423, 2011.
[4] Sternling Ca. and Scriven L., Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE Journal. Vol. 5, pp. 514-523, 1959.
[5] Hennenberg M., Bisch PM., Vignes-Adler M. and Sanfeld A., Mass transfer, Marangoni effect, and instability of interfacial longitudinal waves: I. Diffusional exchanges. Journal of Colloid and Interface Science, Vol. 69, pp. 128-137, 1979.
[6] Hennenberg M., Bisch PM., Vignes-Adler M. and Sanfeld A., Mass transfer, marangoni effect, and instability of interfacial longitudinal waves. II. Diffusional exchanges and adsorption—desorption processes. Journal of Colloid and Interface Science, Vol. 74, pp. 495-508, 1980.
[7] Nakache E., Dupeyrat M. and Vignes-Adler M., Experimental and theoretical study of an interfacial instability at some oil—Water interfaces involving a surface-active agent: I. Physicochemical description and outlines for a theoretical approach. Journal of Colloid and Interface Science, Vol. 94, pp. 187-200, 1983.
[8] Slavtchev S. and Mendes M., Marangoni instability in binary liquid–liquid systems. International journal of heat and mass transfer, Vol. 47, pp. 3269-78, 2004.
[9] Slavtchev S., Hennenberg M., Legros J-C. and Lebon G., Stationary solutal Marangoni instability in a two-layer system. Journal of Colloid and Interface Science, Vol. 203, pp. 354-368, 1998.
[10] Slavtchev S., Kalitzova-Kurteva P. and Mendes M., Marangoni instability of liquid–liquid systems with a surface-active solute. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 282, pp. 37-49, 2006.
[11] Dong T., Wang F., Weheliye WH. and Angeli P., Surfing of drops on moving liquid–liquid interfaces. Journal of Fluid Mechanics, Vol.892, 2020.
[12] Angeli P. and Hewitt GF., Drop size distributions in horizontal oil-water dispersed flows. Chemical Engineering Science, Vol. 55, No. 3, pp. 133-143, 2000.
[13] Sajjadi S., Zerfa M. and Brooks BW., Dynamic behaviour of drops in oil/water/oil dispersions. Chemical Engineering Science, Vol. 57, pp. 663-75, 2002.
[14] Lasheras J., Eastwood C., Martınez-Bazán C. and Montanes J., A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. International Journal of Multiphase Flow, Vol. 28, pp. 247-78, 2002.
[15] Cox B., On driving a viscous fluid out of a tube. Journal of Fluid Mechanics, Vol 14, pp. 81-96, 1962.
[16] Taylor T. and Acrivos A., On the deformation and drag of a falling viscous drop at low Reynolds number. Journal of Fluid Mechanics. Vol. 18, pp. 466-76, 1964.
[17] Wellek R., Agrawal A. and Skelland A., Shape of liquid drops moving in liquid media. AIChE Journal, Vol. 12, pp. 854-62, 1966.
[18] Soo SL., Fluid dynamics of multiphase systems. Waltham, Mass, Blaisdell Publishing Co, Vol. 524, pp. 206, 1967.
[19] Clift R., Grace J. and Weber M., Bubbles, Drops and Particles, Academic Press, New York, Vol 5 Nos 1-4, 1978.
[20] Oshaghi MR., Shahsavari M., Afshin H. and Firoozabadi B., Experimental investigation of the bubble motion and its ascension in a quiescent viscous liquid. Experimental Thermal and Fluid Science Vol. 103, pp. 274-85. 2019.
[21]  Haycock P. and Garner F., Circulation in liquid drops. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, Vol. 252, pp. 457-75, 1959.
[22] Winnikow S. and Chao B., Droplet motion in purified systems. The Physics of Fluids, Vol 9, pp. 50-61, 1966.
[23] Kurimoto R., Hayashi K. and Tomiyama A., Terminal velocities of clean and fully-contaminated drops in vertical pipes. International Journal of Multiphase Flow, Vol. 49, pp. 8-23, 2013.
[24] Rao A., Reddy RK., Ehrenhauser F., Nandakumar K., Thibodeaux LJ., Rao D., et al., Effect of surfactant on the dynamics of a crude oil droplet in water column: Experimental and numerical investigation. The Canadian Journal of Chemical Engineering. Vol. 92, pp. 2098-114, 2014.
[25] Blanchette F. and Bigioni TP., Dynamics of drop coalescence at fluid interfaces. Journal of Fluid Mechanics, Vol. 620, pp. 333, 2009.
[26] Mohamed-Kassim Z. and Longmire EK., Drop impact on a liquid–liquid interface. Physics of Fluids, Vol. 15, pp. 3263-73, 2003.
[27] Reynolds O., On the floating of drops on the surface of water depending only on the purity of the surface. Proc Lit Phil Soc Manchester. Vol. 21, 1881.
[28] Cockbain E. and McRoberts T., The stability of elementary emulsion drops and emulsions. Journal of Colloid Science, Vol. 8, pp.440-51, 1953.
[29] Linton M. and Sutherland K., The coalescence of liquid drops. Journal of Colloid Science, Vol. 11, pp. 391-7, 1956.
[30] Charles G. and Mason S., The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. Journal of Colloid Science, Vol. 15, pp. 105-22, 1960.
[31] Gopinath A. and Koch DL., Collision and rebound of small droplets in an incompressible continuum gas. Journal of Fluid Mechanics, Vol. 454, pp. 145, 2002.
[32] Burrill K. and Woods D., Film shapes for deformable drops at liquid-liquid interfaces. III. Drop rest-times. Journal of Colloid and Interface Science, Vol. 42, pp. 35-41, 1973.
[33] Burrill K. and Woods D., Film shapes for deformable drops at liquid-liquid interfaces. II. The mechanisms of film drainage. Journal of Colloid and Interface Science, Vol. 42, pp. 15-34, 1973.
[34] Grace J. and TH N., Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Trans. Instit. Chem. Engrs, Vol. 54, No. 3, pp. 167-173, 1976.
[35] Karimi S., Shafiee M., Abiri A. and Ghadam F., The drag coefficient prediction of a rising bubble through a non-Newtonian fluid. Amirkabir Journal of Mechanical Engineering, Vol. 52, pp. 71-80, 2019.
[36] Mao N., Kang C., Teng S. and Mulbah C., Formation and detachment of the enclosing water film as a bubble passes through the water-oil interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 586, pp. 124236, 2020.
[37] Karimi S., Shafiee M., Ghadam F., Abiri A. and Abbasi H., Experimental study on drag coefficient of a rising bubble in the presence of rhamnolipid as a biosurfactant. Journal of Dispersion Science and Technology. 2020 (in press).
[38] Zhang C., Zhou D., Sa R. and Wu Q., Investigation of single bubble rising velocity in LBE by transparent liquids similarity experiments. Progress in Nuclear Energy, Vol. 108, pp.204-13, 2018.
[39] Grace J., Shapes and velocities of bubbles rising in infinite liquid. Transactions of the Institution of Chemical Engineers, Vol. 51, pp.116-20, 1973.
[40]  Wang S., Zhang Y., Meredith JC., Behrens SH., Tripathi MK. and Sahu KC., The dynamics of rising oil-coated bubbles: experiments and simulations. Soft matter, Vol. 14, pp. 2724-34, 2018.
[41] Zawala J., Krasowska M., Dabros T. and Malysa K., Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. The Canadian Journal of Chemical Engineering, Vol. 85, pp. 669-78, 2007.
[42] Komrakova AE., Single drop breakup in turbulent flow. The Canadian Journal of Chemical Engineering, Vol. 97, pp. 2727-39, 2019.
[43] Singh K., Gebauer F. and Bart HJ., Bouncing of a bubble at a liquid–liquid interface. AIChE Journal. Vol. 63, pp. 3150-7, 2017.
[44] Singh K. and Bart H-J., Passage of a bubble through the interface between a shear-thinning heavier liquid and a Newtonian lighter liquid. Chemical Engineering Communications, Vol. 207, pp. 790-807, 2020.
[45] Sinegribova O., Andreev A., Voronin O., Dvoeglazov K. and Logsdail D., The Influence of Silicic Acid on the Coalescence of Drop in the Extraction System TBP-HNO3 (HCl). Solvent Extraction in the Process Industries. Vol. 3, 1993.
[46]  Hartland S., Coalescence in Dense Packed Dispersion, Ivanov, IB, Ed., in “Thin Liquid Films”. Marcel Dekker, New York, NY; 1988.
[47] Jeffreys G. and Davies G., Coalescence of liquid droplets and liquid dispersion. Recent Advances in Liquid–Liquid Extraction, Pergamon, pp. 495-584, 1971.
[48] Laddha G. and Degaleesan T., Dispersion and coalescence. Handbook of Solvent Extraction, Wiley New York,1983.
[49] Khadiv PP. and Mousavian SMA., Suggestion of new correlations for drop/interface coalescent phenomena in the and absence and presence of single surfactant. Iranian Journal of Chemistry and Chemical Engineering, Vol. 23, No. 1, pp. 79-88, 2004.