[1] Hirai T., Functionally Gradient Materials. Material Science and Technology, R. W. Chan, P. Hassen and E. J. Cramer, VCH, Weinheim, Germany, 17B, pp. 293-341, 1996.
[2] Koizumi M., FGM Activities in Japan, Composites Part B, Vol. 28, No.1, pp.1-4, 1997.
[3] Zhu J., Lai Z., Jeon J. and Lee S., Fabrication of ZrO2-NiCr Functionally Graded Materials by Powder Metallurgy, Mater. Chem. Phys., Vol. 68, No.1-3, pp. 130-135, 2001.
[4] Pattnayak D. K., Bapat V. P., and Rama Mohan, T. R., Techniques for the Synthesis of Functionally Graded Materials, National Seminar on Functionally Graded Materials, Ambernath, India, pp. 86-93, 2001.
[5] Bayat M., Sleem M., Sahari B. B., Hamouda A. M. S. and Mahdi E., Analysis of Functionally Graded Rotating Discs with Variable Thickness, Mechanics Research Communications, Vol. 35, pp. 283-309, 2008.
[6] ژرفی ح. و اختراعی طوسی ح.، تحلیل خزشی دیسک دوار ساخته شده از مواد مدرج تابعی با پروفیل غیریکنواخت، علوم و فناوری کامپوزیت، د 1، ش 2، ص 29-36، 1393.
[7] Whal A. M., Sankey G. O., Manjoine M. J. and Shoemaker E., Creep Test of Rotating Discs at Elevated Temperature and Comparisons with Theory, Journal of Applied Mechanics, Vol. 21, pp. 225-235, 1954.
[8] Nieh T. G., Creep Rupture of a Silicon Carbide Reinforced Aluminum Composite, Metall. Trans. A., Vol. 15, No.1, pp. 139-145, 1984.
[9] Pandey A. B., Mishra R. S. and Mahajan Y. R., Steady State Creep Behavior of Silicon Carbide Particulate Reinforced Aluminum Composites, Acta Metallurgica et Materiala, Vol. 40, pp.2045-2082, 1992.
[10] Singh S. B., and Ray S., Newly Proposed Yield Criteria for Residual Stress and Steady State Creep in an Anisotropic Rotating Composite Disc, Journal of Materials Processing Technique, Vol. 143, pp. 623-628, 2003.
[11] Gupta V. K., Singh S.B., Chandrawat H. N., and Ray S., Creep Behavior of a Rotating Functionally Graded Composite Disc Operating Under Thermal Gradients, Journal of Metallurgical Material Transactions, Vol. 35, pp. 1381-1391, 2004.
[12] Singh S. B., and Ray S., Steady State Creep Behavior in an Isotropic Functionally Graded Material Rotating Disc of Al-SiC Composite, Journal of Metallurgical Material Transactions, Vol. 32, pp.1679-1685, 2001.
[13] Singh S. B., and Ray S., Creep Analysis in an Isotropic FGM Rotating Disc of Al-SiC Composite, Journal of Materials Processing Techniques, Vol. 143, pp. 616-622, 2003.
[14] Gupta V. K., Singh S. B., Chandrawat H. N. and Ray S., Modeling of Creep behavior of a Rotating Disc in the Presence of Both Composition and Thermal Gradient, Journal of Engineering Materials and Technology, Vol. 127, pp. 97-105, 2005.
[15] ژرفی ح. و اختراعی طوسی ح.، تاثیر دما و نحوهی توزیع ذرات بر رفتار خزشی دیسکهای دوار مدرج تابعی، مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 2، ص. 51-59، 1395.
[16] Daghigh V., Daghigh H., Loghman A. and Simoneau A.., Time dependent creep analysis of rotating ferritic steel disk using Taylor series and Prandtl-Reuss relation, International Journal of Mechanical Sciences, Vol. 77, pp. 40-46, 2013.
[17] Zamani Nejad M. and Davoudi Kashkoli M., Time dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux, International Journal of Engineering Science, Vol. 82, pp. 222-237, 2014.
[18] Jabbari M., Zamani Nejad M. and Ghannad M., Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading, International Journal of Engineering Science, Vol. 96, pp. 1-18, 2015.
[19] Loghman A. and Azami M., A novel analytical-numerical solution for nonlinear time-dependent electro-thermo-mechanical creep behavior of rotating disk made of piezoelectric polymer, Applied Mathematical Modeling, Vol. 40, pp. 4795-4811, 2016.
[20] Singh R., Saxena R. K., Khanna K. and Gupta V. K., Modelling creep response of a functionally graded ratating disc with exponential reinforcement gradient, Materials today: Proceedings, Vol. 18, pp. 3891-3899, 2019.
[21] Bellman R., Kashef B. G. and Casti J., Differential Quadrature: a Technique for the Rapid Solution of Nonlinear Partial Differential Equations, Journal of Computational Physics, Vol. 10, pp. 45-52, 1972.
[22] Shu C. and Richards B. E., Applications of Generalized Differential Quadrature to Solve Two Dimensional Incompressible Navier-Stokes Equations, International Journal of Numerical Methods in Fluids, Vol. 15, pp. 791-798, 1992.
[23] Zharfi H. and Ekhteraei Toussi H., Numerical Creep Analysis of FGM Rotating Disc with GDQ Method, Journal of Theoretical and Applied Mechanics, Vol. 55, No.1, pp. 331-341, 2017.
[24] Shu C., Chew Y. T. and Richards B. E., Generalized Differential Integral Quadrature and Their Application to Solve Boundary Layer Equations, International Journal of Numerical Methods in Fluids, Vol. 21, pp. 723-733, 1995.
[25] Shu C., Free Vibration Analysis of Composite Laminated Conical Shells by Generalized Differential Quadrature, Journal of Sound and Vibration, Vol. 194, pp. 578-604, 1996.
[26] Zharfi H. and Ekhteraei Toussi, Non-Steady Creep Analysis of FGM Rotating Disc using GDQ Method, Advances in Applied Mathematics and Mechanics, Vol. 11, No.1, pp. 1-15, 2019.
[27] Loghman A., Gorbanpour Arani A., Shajari A. R. and Amir S., Time Dependent Termoelastic Creep Analysis of Rotating Disc made of Al-SiC Composite, Archive of Applied Mechanics, Vol. 81, pp. 1853-1864, 2011.
[28] Ghorbani M. T., A Semi-Analytical Solution for Time-Variant Thermoelastic Creep Analysis of Functionally Graded Rotating Disks with Variable Thickness and Properties, International Journal of Advanced Design and Manufacturing Technology, Vol. 5, No.2, pp. 41-50, 2012.