[1] Özgüven H. N., & House, D. R. Mathematical models used in gear dynamics a review. Journal of sound and vibration.121(3): 383-411,1988..
[2] Sato K., Yamamoto S., & Kawakami T. Bifurcation sets and chaotic states of a gear system subjected to harmonic excitation. Computational Mechanics. 7(3):173-182, 1991.
[3] Blankenship G. W., & Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity. Journal of Sound and Vibration.185(5):743-765,1995.
[4] Kahraman A., & Blankenship G. W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters. Journal of Applied Mechanics. 64(1): 217-226, 1997.
[5] Raghothama, A., & Narayanan, S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. Journal of Sound and Vibration. 226(3): 469-492, 1999.
[6] Theodossiades,S., & Natsiavas S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. Journal of Sound and vibration. 229(2):287-310, 2000.
[7] Wang J., Zheng J., & Yang AAn analytical study of bifurcation and chaos in a spur gear pair with sliding friction. Procedia Engineering. 31:563-570, 2012.
[8] Chang Jian, C. W., & Chen C. O. K. Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with non-linear suspension. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 220(6):549-561, 2006.
[9] Chang Jian C. W., & Chang S. M. Bifurcation and chaos analysis of spur gear pair with and without nonlinear suspension. Nonlinear Analysis: Real World Applications. 12(2):979-989, 2011.
[10] Chang Jian C. WStrong nonlinearity analysis for gear-bearing system under nonlinear suspension bifurcation and chaos. Nonlinear analysis: Real world applications. 11(3):1760-1774, 2010.
[11] Chang Jian C. W. Non-linear dynamic analysis of a HSFD mounted gear-bearing system. Nonlinear Dynamics. 62(1):333-347, 2010.
[12] Chang Jian C. W. Nonlinear dynamic analysis for bevel-gear system under nonlinear suspension-bifurcation and chaos. Applied Mathematical Modelling. 35(7):3225-3237, 2011.
[13] Ma, R., & Chen, Y. S. (2013). Bifurcation of multi-freedom gear system with spalling defect. Applied Mathematics & Mechanics. 34(4):475–488.
[14] Farshidianfar A., & Saghafi A. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dynamics. 75(4):783-806, 2014.
[15] Farshidianfar, A., & Saghafi, A. (2014). Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Physics Letters A . 378(46):3457-3463.
[16] Saghafi, A., & Farshidianfar A. An analytical study of controlling chaotic dynamics in a spur gear system. Mechanism and Machine Theory. 96:179-191,2016.
[17] Wang J., Wang H., & Guo L. Analysis of effect of random perturbation on dynamic response of gear transmission system. Chaos, Solitons & Fractals. 68:78-88, 2014.
[18] Zhou S., Song G., Ren Z., & Wen B. Nonlinear dynamic analysis of coupled gear-rotor-bearing system with the effect of internal and external excitations. Chinese Journal of Mechanical Engineering. 29(2):281-292, 2016.
[19] Yu, X., & Xia, Y. (2000). Detecting unstable periodic orbits in Chen's chaotic attractor. International Journal of Bifurcation and Chaos, 10(08), 1987-1991.
[20] Dhamala M., Lai Y. C., & Kostelich E. J. Detecting unstable periodic orbits from transient chaotic time series. Physical Review E, 61(6), 6485, 2000.
[21] Pingel D., Schmelcher P., & Diakonos F. K. Detecting unstable periodic orbits in chaotic continuous-time dynamical systems. Physical Review E, 64(2), 026214, 2001.
[22] Bu S., Wang B. H., & Jiang P. Q. Detecting unstable periodic orbits in chaotic systems by using an efficient algorithm. Chaos, Solitons & Fractals, 22(1), 237-241, 2004.
[23] Saiki Y. Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors. Nonlinear Processes in Geophysics, 14(5), 615-620, 2007.
[24] Ma H., Lin W., & Lai Y. CDetecting unstable periodic orbits in high-dimensional chaotic systems from time series: Reconstruction meeting with adaptation. Physical Review E, 87(5), 050901, 2013.
[25] Nazzal J. M., & Natsheh A. N. Chaos control using sliding-mode theory. Chaos, Solitons & Fractals, 33(2), 695-702, 2007.
[26] Huang Y. J., Kuo T. C., & Chang S. H. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(2), 534-539, 2008.
[27] Pai M. C. Chaotic sliding mode controllers for uncertain time-delay chaotic systems with input nonlinearity. Applied Mathematics and Computation, 271, 757-767, 2015.
[28] Ghamati M., & Balochian S. Design of adaptive sliding mode control for synchronization Genesio–Tesi chaotic system. Chaos, Solitons & Fractals, 75, 111-117, 2015.
[29] Xu C., & Zhang QOn the chaos control of the Qi system. Journal of Engineering Mathematics, 90(1), 67-81, 2015.
[30] Taghvaei S., & Vatankhah R. Detection of unstable periodic orbits and chaos control in a passive biped model. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 40(4), 303-313, 2016..
[31] Yan J. J., Chen C. Y., & Tsai J. S. HHybrid chaos control of continuous unified chaotic systems using discrete rippling sliding mode control. Nonlinear Analysis: Hybrid Systems, 22, 276-283, 2016.
[32] Song, Z., Sun, K., & Ling, S. Stabilization and synchronization for a mechanical system via adaptive sliding mode control. ISA transactions, 68, 353-366, 2017.
[33] شیرالی, پوریا, پورسینا, مهرداد, محقق, شیدا.. اصلاح پروفیل چرخدنده مارپیچ بهمنظور کاهش سروصدا. مهندسی مکانیک دانشگاه تبریز, 47(2), 139-148. 1396.