ارزیابی مقایسه‌ای از الگوهای متفاوت برای یک سیستم خورشیدی با جاذب ماژول فتوولتاییک نیمه شفاف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

قیمت واحد کمتر و بازدهی قابل قبول دو فاکتور مهم در انتخاب کلکتور خورشیدی خانگی به شمار می‌آیند. سیستم خورشیدی غیر فعال فتوولتاییک-گرمایی (PVT) به دلیل سادگی و یکپارچه بودن ساختمان آن، سیستمی بهینه و اقتصادی برای تولید همزمان آب گرم و الکتریسیته در نواحی آب و هوایی مختلف می‌باشد. در این مقاله با هدف کاهش هزینه‌ها و بهبود بازدهی سیستم غیر فعال خورشیدی، طرح جدیدی از این نوع سیستم پیشنهاد شده است. این سیستم شامل ماژول نیمه شفاف خورشیدی a-Si است که علاوه بر تولید الکتریسیته در نقش جاذب خورشیدی نیز عمل می‌کند. دلیل انتخاب ماژول نیمه شفاف a-Si پایین بودن مقدار سیلیکون و مصرف انرژی پایین در تولید آن است؛ این عامل موجب پایین بودن قیمت آن در مقایسه با سایر ماژول‌های خورشیدی می‌باشد. در کار حاضر چهار حالت مختلف از سیستم‌های غیر فعال خورشیدی PVT شبیه‌سازی و مقایسه شده‌اند. براساس نتایج سیستم یک دارای راندمان حرارتی بیشتر نسبت به سیستم 3 و 4 و توان تولیدی بیشتری نسبت به 3 سیستم دیگر می‌باشد. برای سیستم یک راندمان حرارتی 84-76٪ و راندمان الکتریکی 9/87-8/94٪ به ‌دست آمده است.

کلیدواژه‌ها

موضوعات


[1]     Ziapour B.M., Palideh V., and Baygan M., Performance comparison of four passive types of photovoltaic-thermal systems, Energy Convers. Manag., Vol. 88, pp. 732–738, 2014.
[2]     Ziapour B.M., Palideh V., and Mokhtari F., Performance improvement of the finned passive PVT system using reflectors like removable insulation covers, Appl. Therm. Eng.,Vol. 94, pp. 341–349, 2016.
[3]     Ziapour B.M., Palideh V., and Mohammadnia A., Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells, Energy Convers. Manag., Vol. 86, pp. 587–594, 2014.
[4]     Tyagi V.V., Kaushik S.C., and Tyagi S.K., Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology, Renew. Sustain. Energy Rev., Vol. 16, no. 3, pp. 1383–1398, 2012.
[5]     Fudholi A., Sopian K., Yazdi M.H., Ruslan M.H., Ibrahim A., and Kazem H.A., Performance analysis of photovoltaic thermal (PVT) water collectors, Energy Convers. Manag., Vol. 78, pp. 641–651, 2014.
[6]     Rommel M., Zenhäusern D., Baggenstos A., Türk O., and Brunold S., Application of unglazed PVT collectors for domestic hot water pre-heating in a development and testing system, Energy Procedia, Vol. 48, pp. 638–644, 2014.
[7]     Rossi C., Tagliafico L.A., Scarpa F., and Bianco V., Experimental and numerical results from hybrid retrofitted photovoltaic panels, Energy Convers. Manag., Vol. 76, pp. 634–644, 2013.
[8]     Agrawal S. and Tiwari G.N., Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors, Energy Convers. Manag., Vol. 65, pp. 628–636, 2013.
[9]     Aste N., Del Pero C, and Leonforte F., Optimization of solar thermal fraction in PVT systems, Energy Procedia, Vol. 30, pp. 8–18, 2012.
[10] Kalogirou S.A., Use a TRNSYS for modelling and simulation of a hybrid pv-thermal solar system for Cyprus, Renew. Energy, Vol. 23, no. 2, pp. 247–260, 2001.
[11] Dubey S. and Tay A.A.O., Testing of two different types of photovoltaic-thermal (PVT) modules with heat flow pattern under tropical climatic conditions, Energy Sustain. Dev., Vol. 17, no. 1, pp. 1–12, 2013.
[12] Touafek K., Khelifa A., and Adouane M., Theoretical and experimental study of sheet and tubes hybrid PVT collector, Energy Convers. Manag., Vol. 80, pp. 71–77, Apr. 2014.
[13] Sakhrieh A. and Al-Ghandoor A., Experimental investigation of the performance of five types of solar collectors, Energy Convers. Manag., 2013.
[14] Kaushik S.C., Kumar R., Garg H.P., and Prakash J., Transient analysis of a triangular built-in-storage solar water heater under winter conditions, Heat Recover. Syst. CHP, Vol. 14, no. 4, pp. 337–341, 1994.
[15] Smyth M., Eames P.C., and Norton B., Heat retaining integrated collector/storage solar water heaters, Sol. Energy, Vol. 75, no. 1, pp. 27–34, 2003.
[16] Gertzos K.P. and Caouris Y.G., Optimal arrangement of structural and functional parts in a flat plate integrated collector storage solar water heater (ICSSWH), Exp. Therm. Fluid Sci., Vol. 32, no. 5, pp. 1105–1117, 2008.
[17] Ecevit A., Al-Shariah A. M., and Apaydin E. D., Triangular built-in-storage solar water heater,” Sol. Energy, Vol. 42, No. 3, pp. 253–265, 1989.
[18] He W., Chow T.T., Ji J., Lu J., Pei G., and Chan L.S., Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water, Appl. Energy, Vol. 83, no. 3, pp. 199–210, 2006.
[19] Husain A.A.F., Hasan W.Z.W., Shafie S., Hamidon M.N., and Pandey S.S., A review of transparent solar photovoltaic technologies, Renew. Sustain. Energy Rev., Vol. 94, no. January 2017, pp. 779–791, 2018.
[20] Chow T.T., Fong K.F., He W., Lin Z., and Chan A.L.S., Performance evaluation of a PV ventilated window applying to office building of Hong Kong, Energy Build., Vol. 39, no. 6, pp. 643–650, 2007.
[21] Leite Didoné E. and Wagner A., Semi-transparent PV windows: A study for office buildings in Brazil, Energy Build., Vol. 67, pp. 136–142, 2013.
[22] Skandalos N. and Karamanis D., Investigation of thermal performance of semi-transparent PV technologies, Energy Build., Vol. 124, pp. 19–34, 2016.
[23] Dubey S. and Tiwari G.N., Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater, Sol. Energy, Vol. 82, no. 7, pp. 602–612, 2008.
[24] Tiwari A., Sodha M.S., Chandra A., and Joshi J.C., Performance evaluation of photovoltaic thermal solar air collector for composite climate of India, Sol. Energy Mater. Sol. Cells, Vol. 90, no. 2, pp. 175–189, 2006.
[25] Ziapour B.M. and Aghamiri A., Simulation of an enhanced integrated collector-storage solar water heater, Energy Convers. Manag., Vol. 78, pp. 193–203, 2014.
[26] Kostić L.T. and Pavlović Z.T., Optimal position of flat plate reflectors of solar thermal collector, Energy Build., Vol. 45, pp. 161–168, 2012.
[27] william A.B. John A.Duffie, Solar Engineering of Thermal Processes., 1974.
[28] Holman J.P., Heat transfer. McGraw Hill Higher Education, 2010.
[29] Dubey S., Sarvaiya J.N., and Seshadri B., Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review, Energy Procedia, Vol. 33, pp. 311–321, 2013.
[30] Ziapour B.M., Palideh V., Finned passive PVT system with adjustable angle insulating reflectors, US Patent App, 15/299, 360.