ارزیابی تأثیر دمای پیرسازی بر نوع شکست و مکانیسم سایش در فولاد آستنیتی منگنزدار هادفیلد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی، باشگاه پژوهشگران جوان و نخبگان، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران

2 دانشیار، گروه بازرسی فنی، دانشگاه صنعت نفت، آبادان، ایران

چکیده

در این پژوهش به بررسی تأثیر دمای پیرسازی بر مود شکست و مکانیسم سایش در فولاد هادفیلد پرداخته شده است. برای این منظور، ابتدا پنج بلوک از فولاد هادفیلد ریخته‌گری شدند. سپس هر پنج بلوک تحت عملیات حرارتی آستنیته در دمای °C1100 به مدت 2 ساعت قرار گرفته و بلافاصله در آب خالص سریع سرد شدند. سپس یک بلوک در شرایط آستنیته شده باقی مانده و چهار بلوک دیگر تحت عملیات حرارتی پیرسازی در دمای 450، 500، 550 و °C600 به مدت یک ساعت قرار گرفتند. در مرحله‌ی بعد، آزمایش‌های کشش تک‌محوره، سختی‌سنجی به روش ویکرز و سایش به روش پین روی دیسک بر روی هر پنج نمونه انجام شد. برای بررسی ریزساختار از میکروسکوپ نوری و برای بررسی سطوح شکست و مکانیسم سایش از میکروسکوپ الکترونی روبشی استفاده شد. مشاهدات میکروسکوپ نوری نشان داد که افزایش دمای پیرسازی منجر به افزایش میزان رسوبات کاربیدی و کاهش اندازه دانه‌های آستنیت در ریزساختار فولاد هادفیلد می‌شود. نتایج آزمایش‌های مکانیکی نشان داد که افزایش دمای پیرسازی منجر به افزایش سختی، استحکام و مقاومت به سایش فولاد هادفیلد شده، ولی در عوض کرنش شکست آن را به شدت کاهش می‌دهد. همچنین تصاویر میکروسکوپ الکترونی روبشی از سطوح شکست و سایش نشان داد که افزایش دمای پیرسازی منجر به ایجاد شکست ترد شده و در تمام نمونه‌های پیرسازی شده، سایش چسبان اتفاق می‌افتد.

کلیدواژه‌ها

موضوعات


[1] Barannikova S. A., Li Y., Malinovsky A., Pestsov D., Study of Localized Plastic Deformation of Hadfield Steel Single Crystals Using Speckle Photography Technique, Key Engineering Materials, Vol. 683, pp. 84-89, 2016.
[2] Limooei M.B. and Hosseini SH., Optimization of properties and structure  with addition of titanium in hadfield steels, Proc. Conf. of Metal 2012, Brono, Czech Republic, pp. 1-6, 2012.
[3] Najafabadi V.N., Amini K. and Alamdarlo M.B., "Investigating the effect of titanium addition on the wear resistance of Hadfield steel, Metall. Res. Technol., Vol. 111, pp. 375 - 382, 2014.
[4] Magdaluyo E.R. and et al., "Gouging Abrasion Resistance of Austenitic Manganese Steel with Varying Titanium", Proc. of the World Congress on Engineering 2015, London, English, pp. 1-4, 2015. 
]5[ نجف آبادی و.، مناجاتی زاده ح. و امینی ک.، بررسی تأثیر تیتانیم بر بهبود خواص فولاد هادفیلد ASTM A128-C، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 7، شماره اول، صفحات 54 - 45، 1392.
[6] Srivastava A.K. and Das K., In-situ Synthesis and Characterization of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix Composite, Iron and Steel Institute of Japan Int., Vol.49, No.9, pp.1372-1377, 2009.
[7] Srivastava A.K. and et al., Corrosion Behaviour of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix In-Situ Composites, O. J. Metal, Vol. 5, No. 2, pp. 11-17, 2015.
]8[ خیاط م.، خیراندیش ش. و عباسی م.، تاثیر آلومینیم بر ریزساختار فولاد آستنیتی منگنزی هادفیلد در شرایط مختلف عملیات حرارتی، مجموعه مقالات دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن ریخته گری ایران، سمنان، ایران، ص 5-1،  1392.
[9] Tian X. and Zhang Y., Mechanism on the Effect of Al upon the γ→ε Martensite Transformation in the Fe-Mn Alloys, J. Mater. Sci. Technol., Vol. 12, No. 5, pp. 369-372, 1996.
[10] Hosseini SH. And et al., Optimization of heat treatment due to austenising temperature, time and quenching solution in Hadfield steels, World Academy  Sci. Eng. Technol., Vol.7, No. 7, pp. 1940-1943, 2013.
[11] Hosseini SH. and Limooei M.B., Optimization of heat treatment to obtain desired mechanical properties of high carbon Hadfield steels, World Appl. Sci. J., Vol. 15, No. 10, pp. 1421-1424, 2011.
[12] Moghaddam E.G., Varahram N. and Davami P., On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel, Mater. Sci. Eng. A, Vol. 532, No. 35, pp. 260-266, 2011.
[13] Agunsoye J.O., Isaac T.S. and Abiona A.A., On the Comparison of Microstructure Characteristics and Mechanical Properties of High Chromium White Iron with the Hadfield Austenitic Manganese Steel, J. Miner. Mater. Charact. Eng., Vol. 1, No. 1, pp. 24-28, 2013. 
[14] Lindroos M. and et al., The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions, Tribol. Lett., Vol. 57, No. 24, pp. 1-11, 2015.
[15] El-Mahallawi I., Abdel-karim A. and Naguib A., Evaluation of effect of chromium on wear performance of high manganese steel, J. Mater. Sci.  Technol., Vol. 17, No. 11, pp. 1385-1390, 2001.
[16] Abbasi M., Kheirandish SH., Kharrazi Y., Hejazi J., The fracture and plastic deformation of aluminum alloyed Hadfield steels, Mater. Eng. A, Vol.  513-514, pp. 72-76, 2009.
[17] Abbasi M., Kheirandish SH., Kharrazi Y., Hejazi J., On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels, Wear,  Vol. 268, pp. 202-207, 2010.
[18] Annual book of ASTM 128 A / 128 M, Standard specification for steel castings, austenitic manganese, Engineered Casting Solutions Since, Vol. 1, pp. 1-3, 2012.
[19] Annual book of ASTM E92-82 , Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, pp. 1-9, 2003.
[20] Annual book of ASTM E8 / E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, Vol. 03.01, 2015.
[21] Lee Y.K. and Choi C.S., Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system, Metall. Mater. Trans. A, Vol. 31, No. 2, pp. 355-360, 2000.
[22] Hui W., Zhang Y., Shao C., Chen S., Zhao X., Dong H., Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel, J. Mater. Sci. Technolo., Vol. 32, No. 6, pp. 545–551, 2016.
[23] Galindo-Nava, E. I., Rivera-Díaz-del-Castillo P. E. J.,  Understanding the factors controlling the hardness in martensitic steels, Scripta Materialia, Vol. 110, pp. 96-100, 216.
[24] Yin H., He Y., Moumni Z., Sun Q., Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, Int.  J.  Fatigue, Vol. 88, pp. 166-177, 2016.
[25] Cai M. H., Zhu W. J., Stanford N., Pan L. B., Chao Q., Hodgson P. D, Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy, Mater. Sci. Eng. A, Vol. 653, pp. 35-42, 2016.  
]26[ هرتزبرگ ر. د.، اکرامی ع.ا. (مترجم)، تغییر شکل و مکانیک شکست مواد و آلیاژهای مهندسی، چاپ اول، دانشگاه صنعتی شریف، موسسه انتشارات علمی، 1382.
]27[ عباسی م. و همکارانش، ارزیابی مکانیزم شکست در فولاد هادفیلد، مجموعه مقالات ششمین همایش مشترک انجمن مهندسین متالورژی و انجمن علمی ریخه گری ایران، تهران، ایران، ص 9- 1، 1391.