[1] Ray P. and Mac Donald B J., Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis. Finite Elements in Analysis and Design, Vol. 41, No.2, pp. 173-192, 2004.
[2] Zhang H. and Shi-Hong D., Developments in hydroforming. Journal of Materials Processing Technology, Vol. 91, No.1, pp. 236-244, 1999.
[3] Ghosh, Angshuman B., Deshmukh K. and Ngaile G., Database for real-time loading path prediction for tube hydroforming using multidimensional cubic spline interpolation. Journal of Materials Processing Technology, Vol. 211, No.1, pp. 150-166, 2011.
[4] Fann H., Kuang-Jau M. and Hsiao P. Y., Optimization of loading conditions for tube hydroforming. Journal of Materials Processing Technology, Vol. 140, No.1, pp. 520-524, 2003.
[5] Aue-U-Lan Y., Ngaile G. and Altan T., Optimizing tube hydroforming using process simulation and experimental verification." Journal of Materials Processing Technology, Vol. 146, No.1, pp. 137-143, 2004.
[6] Heo S. C., Kim J. and Kang B. S., Investigation on determination of loading path to enhance formability in tube hydroforming process using APDL, Journal of materials processing technology, Vol. 177, No.1, pp. 653-657, 2006.
[7] Abedrabbo N., Worswick M., Mayer R. and Riemsdijk I. V., Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification." journal of materials processing technology, Vol. 209, No.1, pp. 110-123, 2009.
[8] افتخاری شهری س. ا.، خلیلی خ.، احمدی بروغنی س. ی.، بهینه سازی منحنی فشار جابجایی در فرایند هیدروفرمینگ لوله با استفاده از روش رویه پاسخ چند مرحله ای. مهندسی مکانیک مدرس، د. 13، ش. 13، ص. 176-187، 1392.
[9] سیدکاشی س. م. ح.، مسلمی نائینی ح.، لیاقت غ.، موسوی مشهدی م. و هون مون ی.، مطالعه عددی و تجربی اثر نسبت انبساط، شعاع گوشه و نرخ کرنش در فرایند هیدروفرمینگ گرم لولههای آلومینیومی. مهندسی مکانیک مدرس، د. 12، ش. 5، ص. 131-122، 1391.
[10] کدخدایان م. و عرفانی مقدم ح.، طراحی مسیرهای بهینه بارگذاری در فرآیند هیدروفرمینگT شکل با اعمال مسیر فشار نوسانی. روش های عددی در مهندسی، ، د. 29، ش. 2، ص. 120-103، 1389.
[11] Ghosh A., Deshmukh K. and Ngaile G., Database for real-time loading path prediction for tube hydroforming using multidimensional cubic spline interpolation. Journal of Materials Processing Technology, Vol. 211, No.1, pp. 150-166, 2011.
[12] Ge Y. L., Li X., Lang L. H. and Ruan S., An adaptive loading path design method for tube hydroforming using fuzzy logic theory. J Braz. Soc. Mech. Sci. Eng., Vol. 39, No.7, pp. 2607–2617, 2011.
[13] Ray P. and Mac Donald B. J., Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis." Finite Elements in Analysis and Design., Vol. 41, No.2, pp. 173-192, 2004.
[14] Chu E. and Xu Y., Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes. International Journal of Mechanical Sciences, Vol. 46, No.2, pp. 263-283, 2004.
[15] Shu-hui L., Bing Y., Wei-gang Z. and Zhong-qin L., Loading path prediction for tube hydroforming process using a fuzzy control strategy. Materials and Design, Vol. 29 , No.2, pp. 1110–1116, 2008.
[16] Di Lorenzo R., Filice L., Umbrello D. and Micari F., Optimal design of tube hydroforming processes: a fuzzy-logic-based approach. Proceedings of the Institution of Mechanical Engineers 218 Part B: J. Engineering Manufacture, Vol. 21 , No.8, pp. 599–606, 2004.
[17] Mohammadi F., Kashanizade H. and MosaviMashadi M., Optimization using finite element analysis, neural network, and experiment in tube hydroforming of aluminium T joints. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 21 , No.8, pp. 1299-1305, 2007.
[18] Imaninejad M., Subhash G. and Loukus A., Loading path optimization of tube hydroforming process. International Journal of Machine Tools and Manufacture, Vol. 45 , No.12, pp. 1504-1514, 2005.