افزایش بازده گرمایی هواگرمکن‌های خورشیدی با استفاده از شیارهای عرضی و تعیین آرایش بهینه شیارها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

2 استادیار، گروه مهندسی مکانیک، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

در این مقاله، عملکرد یک هواگرمکن خورشیدی با استفاده از شیار­های عرضی به صورت عددی بررسی شده است. برای این منظور، معادلات حاکم بر جریان سیال شامل قوانین پیوستگی، مومنتوم و انرژی در نرم­افزار Fluent حل شده­اند. با توجه به متلاطم بودن جریان سیال در داخل هواگرمکن­های خورشیدی و سهم قابل توجه تابش در انتقال گرما، آشفتگی و تابش نیز در نظر گرفته شده­اند که برای یافتن بهترین مدل­های آشفتگی و تابش، نتایج حاصل با نتایج مطالعات تجربی قبلی برای هواگرمکن­ بدون شیار مقایسه شده است. سپس با استفاده از بهترین مدل­های بدست آمده، تأثیرات پارامتر­هایی نظیر وجود شیار، تغییر شار گرمایی مؤثر، تغییر هندسه و آرایش شیار­ها در دبی­های جرمی مختلف، بر بازده گرمایی هواگرمکن بررسی و تحلیل شده است. نتایج، افزایش بازده گرمایی با استفاده از شیارهای عرضی را تصدیق کرده و نشان دادند که در بین هندسه­های مورد بررسی، شیارهای گوه­ای بهترین بازده گرمایی را دارند. همچنین آرایش بهینه شیارها، برای جریان­های با اعداد مختلف رینولدز، متفاوت است، بطوریکه در اعداد رینولدز پایین، فاصله بهینه دو شیار مجاور در مقایسه با اعداد رینولدز بالا، بیشتر است.

کلیدواژه‌ها

موضوعات


[1] Hans V.S., Saini R.P., Saini J.S., Performance of artificially roughened solar air heaters—a review, Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, pp. 1854-1869, 2009.
[2] Kakaç S., Shah R.K., Aung W., Handbook of single-phase convective heat transfer: Wiley New York et al., 1987.
[3] Webb R.L., Principles of Enhanced Heat Transfer. New York: John Wiley&Sons, Inc, 1994.
[4] Sundén B., Brebbia C.A., Faghri M., Heat transfer in gas turbines: WIT press, 2001.
[5] Prasad K., Mullick S.C., Heat transfer characteristics of a solar air heater used for drying purposes, Applied Energy, Vol. 13, No. 2, pp. 83-93, 1983.
[6] Prasad B.N., Saini J.S., Optimal thermohydraulic performance of artificially roughened solar air heaters, Solar energy, Vol. 47, No. 2, pp. 91-96, 1991.
[7] Saini S.K., Saini R.P., Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness, Solar Energy, Vol. 82, No. 12, pp. 1118-1130, 2008.
[8] Momin A.M., Saini J.S., Solanki S.C., Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate, International journal of heat and mass transfer, Vol. 45, No. 16, pp. 3383-3396, 2002.
[9] Ong K.S., Thermal performance of solar air heaters: mathematical model and solution procedure, Solar energy, Vol. 55, No. 2, pp. 93-109, 1995.
[10] Bhushan B., Singh R., Thermal and thermohydraulic performance of roughened solar air heater having protruded absorber plate, Solar energy, Vol. 86, No. 11, pp. 3388-3396, 2012.
[11] Ammari H.D., A mathematical model of thermal performance of a solar air heater with slats, Renewable Energy, Vol. 28, No. 10, pp. 1597-1615, 2003.
[12] Shahmardan M.M., Norouzi M., Kayhani M.H., Delouei A.A., An exact analytical solution for convective heat transfer in rectangular ducts, Journal of Zhejiang University SCIENCE A, Vol. 13, No. 10, pp. 768-781, 2012.
[13] مجیدیان ع.، شبیه سازی عملکرد طرحی نو از کلکتور هواگرم خورشیدی برای سیستم سرمایش خورشیدی یک ساختمان نمونه در مناطق گرم و مرطوب شمال ایران. مجله مهندسی مکانیک دانشگاه تبریز،  د. 47، ش. 3،  ص. 261-269، 1396.      
[14] یاری ش. و صفرزاده ح.، بررسی عملکرد بهینه هواگرمکن های خورشیدی با چیدمان موانع در کانال عبور هوا، به کمک منطق فازی. مکانیک سازه ها و شاره ها، د. 6، ش. 4، ص. 329-341، 1395.
[15] افضلی ف.، امیری ح.، نخعی و. و عامری م.، ساخت و مدل‌سازی حرارتی کلکتورهای هوایی مشبک خورشیدی با صفحات جاذب فلزی (استیل) و غیرفلزی. مهندسی مکانیک مدرس، د. 17، ش. 9، ص. 339-350، 1396.
[16] Singh S., Singh B., Hans V.S., Gill R.S., CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib, Energy, Vol. 84, pp. 509-517, 2015.
[17] Duffle J.A., Beckman W.A., Solar engineering of thermal processes, 1980.
[18] Webb R.L., Eckert E.R., Application of rough surfaces to heat exchanger design, International Journal of Heat and Mass Transfer, Vol. 15, No. 9, pp. 1647-1658, 1972.
[19] White F.M., Corfield I., Viscous fluid flow: McGraw-Hill New York, 2006.
[20] Graebel W., Advanced fluid mechanics: Academic Press, 2007.
[21] Chhabra R.P., Richardson J.F., Non-Newtonian flow in the process industries: fundamentals and engineering applications: Butterworth-Heinemann, 1999.
[22] Gnielinski V., New equations for heat and mass-transfer in turbulent pipe and channel flow, International chemical engineering, Vol. 16, No. 2, pp. 359-368, 1976.
[23] Dittus F.W., Boelter L.M., Heat transfer in automobile radiators of the tubular type, University of California publications in Engineering, Vol. 2, pp. 371, 1930.
[24] Bardina J.E., Huang P.G., Coakley T.J., Turbulence Modeling Validation, Testing, and Development, NASA Technical Memorandum.110446, 1997.
[25] Bopche S.B., Tandale M.S., Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct, International Journal of Heat and Mass Transfer, Vol. 52, No. 11, pp. 2834-2848, 2009.
[26] Twidell J., Weir T., Renewable energy resources: Routledge, 2015.
[27] Sukhatme S.P., Nayak J.P., Solar Energy, New Delhi: Tata McGraw Hill, Vol. 3rd edition, 2011.