بررسی جامع مطالعاتی رفتار خزشی فرورونده آلیاژهای منیزیم - روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی متالورژی، دانشکده مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 استادیار گروه مواد و متالورژی، دانشکده مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

3 دانشیار گروه مواد و متالورژی، دانشکده مکانیک، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

سیستم آلیاژی Mg-Zn به علت دارابودن قابلیت سخت­شوندگی از اهمیت زیادی برخوردار است، لذا در راستای افزایش مقاومت خزشی و حفظ استحکام در دمای بالای این سری آلیاژها پژوهش­هایی در زمینه اثر عناصر آلیاژی، عملیات حرارتی و بهبود خواص مکانیکی آن­ها صورت گرفته است. دراین پژوهش­ها آلیاژهای سری منیزیم-روی با عناصر آلیاژی با درصدهای وزنی متفاوت و تحت عملیات حرارتی­های مختلف قرار گرفته­اند و ریزساختار و خواص مکانیکی عمدتا توسط میکروسکوپ نوری، پراش اشعه ایکس، میکروسکوپ الکترونی روبشی، سختی سنجی، تست کشش، خزش فرورونده مورد بررسی قرار گرفتند.­ نتایج حاصل از این بررسی­ها نشان داد عناصر آلیاژی عمدتا می­تواند با ایجاد ترکیبات با پایداری حرارتی بالا مقاومت خزشی را افزایش دهد. از طرفی انجام عملیات محلول­سازی و پیرسازی می­تواند باعث ریزدانگی و پراکندگی رسوبات شده و با ایجاد موانعی دربرابر حرکت نابجایی­ها، باعث افزایش مقاومت خزشی می­شود.

کلیدواژه‌ها

موضوعات


[1] Roberts C.S., Magnesium and its Alloys. 1960: Wiley.
[2] Rashno S., Nami B., and Miresmaeili S.M., Impression creep behavior of a cast MRI153 magnesium alloy. Materials & Design, 2014. 60: pp. 289-294.
[3] Avedesian M.M. and Baker H., ASM specialty handbook: magnesium and magnesium alloys. Vol. 274. ASM international Materials Park, OH, 1999.
[4] Mordike B. and Ebert T., Magnesium: Properties—applications—potential. Materials Science and Engineering: A, 302(1): pp. 37-45, 2001.
[5] Yu H., et al., Hot deformation behavior and processing maps of Mg–Zn–Cu–Zr magnesium alloy. Transactions of Nonferrous Metals Society of China, 23(3): pp. 756-7642013.
 
[6] Haughton J.L and Prytherch W.E., Magnesium and its Alloys. 1937: HM Stationery Office London.
[7] Srinivasan, A., et al., Creep Behavior of AZ91 Magnesium Alloy. Procedia Engineering, 55: pp. 109-113, 2013.
[8] Deng J., et al., Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Materials & Design, 49: pp. 209-219, 2013.
[9] Mahmudi R. and Moeendarbari S., Effects of Sn additions on the microstructure and impression creep behavior of AZ91 magnesium alloy. Materials Science and Engineering: A, 566: pp. 30-39, 2013.
[10] Gibson M.A., et al., The effect of precipitate state on the creep resistance of Mg–Sn alloys. Scripta Materialia,. 63(8): pp. 899-90,. 2010
[11] Badri M., Miresmaeili S.M. and Nami B., Microstructure and Impression Creep Properties of Ca-Containing AS31 Magnesium Alloy. Acta Metallurgica Sinica (English Letters), 29(12): pp. 1089-1097,2016.
[12] Mohammadi Mazraeshahi E., et al., Effect of Si on the creep properties of AZ61 cast magnesium alloy. Materials & Design, 76: pp. 64-70, 2015.
[13] Buha, J. and T. Ohkubo, Natural Aging in Mg-Zn(-Cu) Alloys. Metallurgical and Materials Transactions A, 2008. 39(9): pp. 2259-2273.
[14] Ye J., et al., Study on Aging Strengthening of Mg-Zn-Cu Alloy Based on Component Optimization Design. Materials Science Forum, 873: pp. 33-37, 2016.
[15] Wen Q., et al., Effect of Ca addition on the microstructure and tensile properties of Mg–4.0Zn–2.0Gd alloys. Materials Science and Engineering: A, 609: pp. 1-,. 2014.
[16] S. Li, H. Izui, M. Okano, W. Zhang, and T. Watanabe, “Microstructure and Mechanical Properties of ZrO,” vol. 10, no. 2, pp. 111–116, 2009.
 [17] Polmear I. and John D.S., Light alloys: from traditional alloys to nanocrystals. 2005: Butterworth-Heinemann.
[18] Chen J., et al., Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys. Journal of Alloys and Compounds, 461(1-2): pp. 209-215, 2008.
[19] Mathew, M.D., Characterisation of Mechanical Properties Using Ball Indentation, Small Punch Creep and Impression Creep Methods. 2017: p. 79-94.
[20] Yang F. and Li J.C.M., Impression test—A review. Materials Science and Engineering: R: Reports, 74(8): pp. 233-25,. 2013.
[21] Sastry D., Impression creep technique—an overview. Materials Science and Engineering: A, 409(1): pp. 67-7, 2005.
[22] Chu, S. and J. Li, Impression creep; a new creep test. Journal of Materials Science, 1977. 12(11): pp. 2200-2208.
[23] Kondori, B. and R. Mahmudi, Impression Creep Characteristics of a Cast Mg Alloy. Metallurgical and Materials Transactions A, 40(8): pp. 2007-2015, 2009.
[24] Nayyeri G. and Mahmudi R., Effects of Sb additions on the microstructure and impression creep behavior of a cast Mg–5Sn alloy. Materials Science and Engineering: A, 527(3): pp. 669-678, 2010.
[25Jun]   J. H., Kim J. M., Park B. K., Kim K. T.  and Jung W. J., Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy, J. Mater. Sci., Vol. 40, No. 9–10, pp. 2659–2661, 2005.
 [26] Michael Kassner,   Fundamental of creep in metals and alloys,
[27] Naghdi F. and Mahmudi R., Impression creep behavior of the extruded Mg–4Zn–0.5Ca and Mg–4Zn–0.5Ca–2RE alloys. Materials Science and Engineering: A, 2014. 616: pP. 161-170.
[28] Peng L., et al., Impression creep of a Mg-8Zn-4Al-0.5Ca alloy. Materials Science and Engineering: A, 410-411: pp. 42-47, 2005.
[29] Alizadeh R., Mahmudi R. and Langdon T.G., Creep mechanisms in an Mg–4Zn alloy in the as-cast and aged conditions. Materials Science and Engineering: A,. 564: pp. 423-43. ,2013.
[30] Golmakaniyoon S. and Mahmudi R., Effect of aging treatment on the microstructure, creep resistance and high-temperature mechanical properties of Mg–6Zn–3Cu alloy with La- and Ce-rich rare earth additions. Materials Science and Engineering: A, 620: pp. 301-308, 2015.