تحلیل ترموالاستیک کوپل استوانه جدار ضخیم دارای ترک محیطی کامل با در نظر گرفتن نظریه‌های گرین-لیندزی و گرین-نقدی نوع II

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

2 استادیار، دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

چکیده

در این مقاله، ضریب شدت تنش مود I ترک محیطی در یک استوانه همسانگرد، تعیین شده است. استوانه جدار ضخیم تحت شوک گرمایی یک‌بعدی طبق نظریه­های کلاسیک ترموالاستیسیته، گرین-لیندزی و گرین-نقدی قرار دارد. فرم متحد معادلات حاکم، شامل نظریه کلاسیک و نظریه­های تعمیم­یافته گرین-لیندزی و گرین-نقدی می­باشد. معادلات انرژی و تعادل در استوانه به­صورت همزمان با در نظر گرفتن اثر کوپل میدان­های دما و کرنش و نیز اثر جمله اینرسی در معادلات حاکم حل شده است. ضریب شدت تنش نوک ترک محیطی با استفاده از روش تابع وزنی تعیین می­شود. در نظر گرفتن زمان­های آسایش در معادلات حاکم نظریه­های تعمیم­یافته، موجب پیش­بینی مقادیر بزرگتر دما و تنش نسبت نظریه کلاسیک می­شود. همچنین، ضریب شدت تنش نظریه­های تعمیم­یافته به­طور قابل ملاحظه­ای از نظریه کلاسیک بزرگتر است. در هر لحظه ضریب شدت تنش بیشینه نظریه­های تعمیم­یافته، برای ترکی اتفاق می­افتد که نوک آن در موقعیت پیشانی موج تنش قرار دارد. نظریه گرین-نقدی نوع II به دلیل در نظر نگرفتن استهلاک در معادلات حاکم خود، مقدار بیشینه تنش و ضریب شدت تنش بزرگتری نسبت به نظریه گرین-لیندزی دارد.

کلیدواژه‌ها

موضوعات


[1] Duhamel J. M., Second memoire sur les phenomenes thermo-mecaniques, EcolePolytechnique, vol. 15, No.25, pp. 1–57, 1837.
[2] Bagri A., Eslami M. R,A unified generalized thermoelasticity formulation; Application to thick functionally graded cylinders, Journal of thermal stresses, Vol. 30, No. 9-10, pp. 911–930, 2007.
[3] Bagri A., Eslami M. R., Generalized coupled thermoelasticity of disks based on the Lord–Shulman model, Journal of thermal stresses, Vol. 27, No. 8, pp. 691–704, 2004.
[4] Green A. E., Lindsay K. A., Thermoelasticity, Journal of Elasticity, Vol. 2, No. 1, pp. 1–7, 1972.
[5] Green A. E., Naghdi P. M., Thermoelasticity without energy dissipation, Journal of Elasticity, Vol. 31, No. 3, pp. 189–208, 1993.
[6] Lord H. W., Shulman Y., A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, Vol. 15, No. 5, pp. 299–309, 1967.
[7] Sherief H. H., Anwar M. N., A problem in generalized thermoelasticity for an infinitely long annular cylinder, International journal of engineering science, Vol. 26, No. 3, pp. 301–306, 1988.
[8] Sherief H. H., Anwar M. N., A problem in generalized thermoelasticity for an infinitely long annular cylinder composed of two different materials, Acta mechanica, Vol. 80, No. 1-2, pp. 137–149, 1989.
[9] Fu J. W., Chen Z. T., Qian L. F., Coupled thermoelastic analysis of a multi-layered hollow cylinder based on the C–T theory and its application on functionally graded materials, Composite Structures, Vol. 131, No. 1, pp. 139–150, 2015.
[10] Ghasemi A.R., Moradi M., Effect of thermal cycling and open-hole size on mechanical properties of polymer matrix composites, Polymer Testing, Vol. 59, pp.20-28, 2017.
[11] Ghasemi A.R., Moradi M., Low thermal cycling effects on mechanical properties of laminated composite materials, Mechanics of Materials, Vol. 96, pp. 126–137, 2016.
[12] Chen Y. Z., Stress intensity factors in a finite length cylinder with a circumferential crack, International Journal of Pressure Vessels and Piping, Vol. 77, No. 8, pp. 439-444, 2000.
[13] Erdogan F., Ratwani M., Fatigue and fracture of cylindrical shells containing a circumferential crack, International journal of fracture mechanics, Vol. 6, No. 4, pp. 379-392, 1970.
[14] Erdol R., Erdogan F., A thick-walled cylinder with an axisymmetric internal or edge crack, Journal of applied mechanics, Vol. 45, No. 2, pp. 281-286, 1978.
[15] Nied H. F., Erdogan F., Transient thermal stress problem for a circumferentially cracked hollow cylinder, Journal of thermal stresses, Vol. 6, No. 1, pp. 1-14, 1983.
[16] Fu J. W., Chen Z. T., Qian L. F., Hu K. Q., Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C-V heat conduction model, Journal of thermal stresses, Vol. 37, No. 2, pp. 1324-1345, 2014.
[17] Fu J. W., Chen Z. T., Qian L. F., Xu Y. D., Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack, Engineering Fracture Mechanics, Vol. 128, No. 1, pp. 103-120, 2014.
[18] Meshii T., Watanabe K., Maximum stress intensity factor for a circumferential crack in a finite-length thin-walled cylinder under transient radial temperature distribution, Engineering Fracture Mechanics, Vol. 63, No. 1, pp. 23-38, 1999.
[19] Meshii T., Watanabe K., Closed form stress intensity factor of an arbitrary located inner-surface circumferential crack in an edge-restraint cylinder under linear radial temperature distribution, Engineering fracture mechanics, Vol. 60, No. 5-6, pp. 519-527, 1998.
[20] Varfolomeyev I. V., Busch M., Stress intensity factor for internal circumferential cracks in thin- and thick- walled cylinders, Engineering Fracture Mechanics, Vol. 60, No. 5-6, pp. 491-500, 1998.
[21] Nabavi S. M., Ghajar R., Analysis of thermal stress intensity factors for cracked cylinders using weight function method, International Journal of Engineering Science, Vol. 48, No. 12, pp. 1811-1823, 2010.
[22] Ghajar R., Nabavi S. M., Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walled cylinder, Fatigue and Fracture of Engineering Materials and Structures, Vol. 33, No. 8, pp. 504–512, 2010.
[23] Asemi O., Nazari M.B., Evaluation of the stress intensity factor for circumferential cracked cylinders under non-classical thermal shock, Journal of solid and fluid mechanics, Vol. 5, No. 3, pp. 101-112, 2016, (In Persian ).
[24] Farahinejad E., Nazari M. Mahdizadeh Rokhi B., M., Thermoelastic analysis of circumferential cracks in thick-walled cylinders considering dual phase lag theory, Modares Mechanical Engineering, Vol. 16, No. 12, pp. 249-258, 2016, (in Persian ).
[25] Bagri A., Eslami M. R.,A unified generalized thermoelasticity; solution for cylinders and spheres, International Journal of Mechanical Sciences, Vol. 49, No. 12, pp. 1325–1335, 2007.
[26] Hetnarski R. B., Eslami M. R., Thermal Stresses: Advanced Theory and Applications, New York, Springer, pp. 255-256, 2009.
[27] Darabseh T., Yilmaz N., Bataineh M., Transient thermoelasticity analysis of functionally graded thick hollow cylinder based on Green–Lindsay model, International Journal of Mechanics and Materials in Design, Vol. 8, No. 3, pp. 247–255, 2012.
[28] Hosseini-Tehrani P., Hosseini-Godarzi A. R., Tavangar M., Importance of inertia term in dynamic crack problems considering Lord–Shulman theory of thermoelasticity, Journal of thermal stresses, Vol. 28, No. 3, pp. 267–283, 2005
[29] Honig G., Hirdes U., A method for the numerical inversion of Laplace transform, Journal of Computational and Applied Mathematics, Vol. 10, No. 1, pp. 113-132, 1984.