[1] Kockmann N., Micro Process Engineering: Fundamentals, Devices, Fabrication, and Applications. Wiley-VCH, Weinheim, 2006.
[2] Lee T. and Mateescu D., Experimental and Numerical Investigation of 2-D Backward-Facing Step Flow. Journal of Fluids and Structures, Vol. 12, pp. 703-716, 1998.
[3] Wengle H., Huppertz A., Barwolff G. and Janke G., The Manipulated Transitional Backward-Facing Step Flow: An Experimental and Direct Numerical Simulation Investigation. European Journal of Mechanics. B. Fluids, Vol. 20, pp. 25-46, 2001.
[4] Le H., Moin P. and Kim J., Direct Numerical Simulation of Turbulent Flow over a Backward-Facing Step. Journal of Fluid Mechanics, Vol. 330, pp. 349-374, 1997.
[5] Kaiktsis L. and Monkewitz, P. A., Global Destabilization of Flow over a Backward-Facing Step. Physics of Fluids, Vol. 15, pp. 3647-3658, 2003.
[6] Kherbeet A. S., Mohammed H. A., Munisamy K. M. and Salman B. H., The Effect of Step Height of Microscale Backward-Facing Step on Mixed Convection Nanofluid Flow and Heat Transfer Characteristics. International Journal of Heat and Mass Transfer, Vol. 68, pp. 554-566, 2014.
[7] Tien W. H., Dabiri D. and Hove J., Color-Coded Three-Dimensional Micro Particle Tracking Velocimetry and Application to Micro Backward-Facing Step Flows. Experiments in Fluids, Vol. 55, pp. 1-14, 2014.
[8] Huang C. T., Li P. N., Pai C. Y., Leu T. S. and Jen C. P., Design and Simulation of a Microfluidic Blood-Plasma Separation Chip Using Microchannel Structures. Separation Science and Technology, Vol. 45, pp. 42-49, 2010.
[9] Kanaris A. G., Anastasiou A. D. and Paras S. V., Modeling the Effect of Blood Viscosity on Hemodynamic Factors in a Small Bifurcated Artery. Chemical Engineering Science, Vol. 71, pp. 202-211, 2012.
[10] Stogiannis I. A., Passos A. D., Mouza A. A., Paras S. V., Penkavova V. and Tihon J., Flow Investigation in a Microchannel with a Flow Disturbing Rib. Chemical Engineering Science, Vol. 119, pp. 65-76. 2014.
[11] Kakaç S. and Pramuanjaroenkij A., Review of Convective Heat Transfer Enhancement with Nanofluids. International Journal of Heat and Mass Transfer, Vol. 52, pp. 3187-3196, 2009.
[12] Akbarnia A. and Laur R., Investigating the Diameter of Solid Particles Effects on a Laminar Nanofluid Flow in a Curved Tube Using a Two Phase Approach. International Journal of Heat and Fluid Flow, Vol. 29, pp. 706-714, 2008.
[13] Aminfar H, Mohammadpourfard M. and Kahnamouei Y. N., A 3D Numerical Simulation of Mixed Convection of a Magnetic Nanofluid in the Presence of Non-Uniform Magnetic Field in a Vertical Tube Using Two Phase Mixture Model. Journal of Magnetism and Magnetic Materials, Vol. 323, pp. 1963-1972, 2011.
[14] Abbasian Arani A. A. and Amani J., Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of TiO2–Water Nanofluid. Experimental Thermal and Fluid Science, Vol. 44, pp. 520-533, 2013.
[15] Kalteh M., Abbassi A., Saffar-Avval M. and Harting J., Eulerian-Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel. International Journal of Heat and Fluid Flow, Vol. 32, pp. 107-116, 2011.
[16] Kalteh M., Abbassi A., Saffar-Avval M., Frijns A., Darhuber A., Harting J., Experimental and Numerical Investigation of Nanofluid Forced Convection Inside a Wide Microchannel Heat Sink. Applied Thermal Engineering, Vol. 36, pp. 260-268, 2012.
[17] Kalteh M., Investigating the Effect of Various Nanoparticle and Base Liquid Types on the Nanofluids Heat and Fluid Flow in a microchannel. Applied Mathematical Modeling, Vol. 37, pp. 8600–8609, 2013.
[18] Khanafer Kh. and Vafai K., A Critical Synthesis of Thermophysical Characteristics of Nanofluids. International Journal of Heat and Mass Transfer, Vol. 54, pp. 4410-4428, 2011.