بررسی تاثیر ابعاد قطعه کار بر ماشینکاری نانومتری سیلیکون تک کریستال با استفاده از روش دینامیک مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه ساخت و تولید، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، گروه ساخت و تولید، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه کِیو، یوکوهاما، ژاپن

چکیده

فرآیند ماشینکاری نانومتری، روشی فوق پیشرفته جهت ساخت قطعات با دقت ابعادی چندمیکرومتر و صافی سطح نانومتری می‌باشد. علیرغم روش‌های ماشینکاری سنتی، در این روش می‌توان قطعات ترد مانند سیلیکون را نیز به خوبی ماشینکاری نمود. با توجه به انجام این فرآیند در مقیاس نانومتری، رفتار ماده متفاوت از حالت حجیم آن خواهد بود. از این روی، ابعاد قطعه‌کار نیز بر خروجی و کیفیت نهایی قطعات ماشینکاری شده تاثیرگذار می‌باشد. در این تحقیق، با استفاده از روش شبیه‌سازی دینامیک مولکولی و ثابت در نظر گرفتن تمامی پارامترهای ماشینکاری و تحلیلی، تاثیر پهنا و ابعاد قطعه‌کار بر کیفیت ماشینکاری بررسی گردیده است. نتایج مشخص نمود که کوچک شدن بیش از حد ابعاد قطعه‌کار، سبب ایجاد یک شوک اولیه در قطعه می‌گردد. این موضوع سبب افزایش براده‌های منقطع و کاهش کیفیت سطح می‌گردد. همچنین نتایج نشان داد با اینکه پیشروی ابزار سبب افزایش دمای قطعه‌کار می‌گردد، اما در قطعات با طول کمتر از 21 نانومتر، این شتاب بسیار بیشتر می‌باشد. علاوه بر این، مشخص گردید که افزایش ابعاد قطعه‌کار، سبب کاهش نوسانات نیرو و همچنین نیروی کل ماشینکاری می‌گردد.

کلیدواژه‌ها

موضوعات


[1]   Blackman J. A., Handbook of Metal Physics: Metallic Nanoparticles, 1st editio. Elsevier B.V., 2009.
[2]     حسینی س. و.، شبیه‏سازی فرآیند ماشینکاری نانومتری و مطالعه اثر عیوب کریستالی با روش دینامیک مولکولی، رساله دکتری دانشگاه صنعتی خواجه نصیرالدین طوسی، 1391.
[3]     Zhang L. C., Johnson K. L., and Cheong W. C. D., A molecular dynamics study of scale effects on the friction of single-asperity contacts, Tribology Letters, Vol. 10, No. 1–2, pp. 23–28, 2001.
[4]     Padding J. T., and Briels W. J., Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations, The Journal of Chemical Physics., Vol. 117, No. 2, pp. 925, 2002.
[5]     Yamakov V., Wolf D., Phillpot S. R., Mukherjee A. K., and Gleiter H., Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, Nature Materials, Vol. 3, No. 1, pp. 43–47, 2004.
[6]     Sellan D. P., Landry E. S., Turney J. E., McGaughey A. J. H., and Amon C. H., Size effects in molecular dynamics thermal conductivity predictions, Physical Review B,Vol. 81, No. 21, pp. 214305, 2010.
[7]     Hosseini S. V., Vahdati M., and Shokuhfar A., Molecular Dynamics Simulation on Nano-Machining of Single Crystal Copper with a Void, Materials with Complex Behaviour II, Vol. 16, pp. 1–13, 2012.
[8]     Li J., Fang Q., Zhang L., and Liu Y., The effect of rough surface on nanoscale high speed grinding by a molecular dynamics simulation, Computational Materials Science, Vol. 98, pp. 252–262, 2015.
[9]     Chavoshi S. Z., Xu S., and Luo X., Dislocation-mediated plasticity in silicon during nanometric cutting: A molecular dynamics simulation study, Materials Science in Semiconductor Processing , Vol. 51, pp. 60–70, Aug. 2016.
[10]  Chavoshi S. Z., Goel S., and Luo X., Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting, Modelling and Simulation in Materials Science and Engineering, Vol. 24, No. 1, pp. 15002, Jan. 2016.
[11]  Chavoshi S. Z., Goel S., and Luo X., Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation, journal of manufacturing processes, Vol. 23, pp. 201–210, 2016.
[12]  Chavoshi S. Z. and Luo X., An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures, computational materials science, Vol. 113, pp. 1–10, Feb. 2016.
[13]  Xu F., Wang J., Fang F., and Zhang X., A study on the tool edge geometry effect on nano-cutting, The International Journal of Advanced Manufacturing Technology, Vol. 91, No. 5–8, pp. 2787–2797, Jul. 2017.
[14]  Wang Z., Chen J., Wang G., Bai Q., and Liang Y., Anisotropy of Single-Crystal Silicon in Nanometric Cutting, Nanoscale Research Letters, Vol. 12, No. 1, pp. 300, Dec. 2017.
[15]  Plimpton S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, Vol. 117, No. 1, pp. 1–19, Mar. 1995.
 [16]        Gao Y., and Urbassek H. M., Scratching of nanocrystalline metals: A molecular dynamics study of Fe, Applied Surface Science, Vol. 389, pp. 688–695, 2016.
[17] Otieno T., and Abou-El-Hossein K., Molecular dynamics analysis of nanomachining of rapidly solidified aluminium, International Journal of Advanced Manufacturing, Aug. 2017.
[18] Tersoff J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, Vol. 37, No. 12, pp. 6991–7000, 1988.
[19] Ren J., Hao M., Lv M., Wang S., and Zhu B., Molecular dynamics research on ultra-high-speed grinding mechanism of monocrystalline nickel, Applied Surface Science, Vol. 455, No. March, pp. 629–634, Oct. 2018.
[20] عاملی‌ کلخوران س. ن.، وحدتی م.، تاثیر تابع پتانسیل بر شبیه‌سازی دینامیک مولکولی فرآیند ماشینکاری نانومتری سیلیکون تک‌کریستال، علوم کاربردی و محاسباتی در مکانیک، 1397.
[21] Chen H., Hagiwara I., Chang D., and Huang T., Parallel molecular dynamics simulation on nanometric ginding, Trans. JSCES, vol. 7, pp. 207–213, 2005.
[22] Rapaport D. C., The Art of Molecular Dynamics Simulation, Vol. 2. 2004.