بررسی عددی اثر پارامترهای هندسی برمیزان تخلخل بستر سیالی مایع – جامد با استفاده روش شبکه بولتزمن و نمایه هموار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه پیام نور، تهران، ایران

2 استاد، گروه مهندسی شیمی، دانشگاه شهید باهنر، کرمان، ایران

چکیده

 در این تحقیق ابتدا بستر سیالی مایع جامد با استفاده از روش ترکیبی شبکه بولتزمن و نمایه هموار شبیه سازی و در ادامه با تغییر پارامترهای هندسی، شامل قطر ذرات جامد، عرض و ارتفاع اولیه بستر و همچنین نحوه قرارگیری اولیه ذرات جامد غیر همسان، اثر آنها بر تخلخل بست بررسی شده است. روش مطالعه دوفازی  اویلری –لاگرانژی بوده که برای حل فاز جامد معادله حرکت نیوتن، فاز سیال روش شبکه بولتزمن و برقراری شرط عدم لغزش در سطح مشترک ذرات جامد و سیال از روش نمایه هموار استفاده شده است. مقایسه نتایج حل عددی با نتایج تجربی برای حداقل سرعت سیالیت و تخلخل دقت قابل قبولی را نشان می دهد. علاوه براین نتایج نشان داد افزایش قطر ذرات جامد و عرض بستر، افزایش تخلخل و افزایش ارتفاع اولیه بستر کاهش تخلخل بستر را به همراه دارد. درنهایت بررسی اثر  نحوه قرارگیری اولیه ذرات جامد غیر همسان نشان داد درحالتیکه ذرات با قطر کمتر بر روی ذرات با قطر بیشتر قرار دارند بیشترین و در حالتیکه ذرات به صورت مخلوط در هم قرار گرفته اند کمترین تخلخل بستر وجود دارد.

کلیدواژه‌ها

موضوعات


[1]  Gilbertson M.A., Yates J.G., The motion of particles near a bubble in a gas-fluidized bed,    Journal of Fluid Mechanics, Vol.323, pp. 377-385,1996.
[2]   Taghipour F., Ellis N., Wong C., Experimental and computational study of gas-solid fluidized bed hydrodynamics”. Chemical Engineering Science, 60, pp. 6857-6867,2005.
[3]  حسینی ح، مصلحی ا. ، مطالعه انتقال حرارت از دیواره بستر حبابی گاز-جامد به ذرات جامد درون آن به کمک دینامیک سیالات محاسباتی، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان،د. 14 ش. 46، ص123-136،1395.
[4]  یحی زاده ساروی ف، قاسمی م، حکمت ناظمی  ع، مدل سازی بستر سیال فرآیند FCC بر مبنای تغییر اندازه ذرات کلاستر در طول رایزر ، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان،د. 10 ش. 30، ص87-97،1391.
[5]  Chen S and Doolen G.D, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech.Vol. 30 pp. 329 – 364,1998.
[6]  Aidun C.K and Clausen J.R, Lattice Boltzmann method for complex flows, Ann. Rev. Fluid Mech. 42439–472,2010.
[7]  Ladd A.J.C, Numerical simulations of particulate suspensions via a discretized Boltzmann  equation Part I. Theoreticalfoundation, J. Fluid. Mech. 271285–310,1994.
[8]  Ladd A.J.C, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part II. Numerical results, J. Fluid Mech. 271311–339,1994.
[9]   کریمی پور،اکبری، طغرایی،  بررسی اثر گرانش بر جابجایی توام یک میکرو جریان با استفاده از روش شبکه بولتزمن، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان،د. 11 ش. 35، ص77-94،1392.
[10]             Bouzidi M, Firdaouss M and Lallemand P,Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13- 113452–3459,2001.
[11]             Feng Z and Michaelides E.E, The immersed boundary-lattice Boltzmann method for solving  fluid–particles interaction problems, J. Computational Physics 195602–628,2004. 
[12]               Nakayama Y and Yamamoto R, Simulation method to resolve hydrodynamic interactions in colloidal dispersions, Phys. Rev. E 71,036707,2005.
[13]             Zhanga H, Tanb Y, Shuc SH, Niuc X, Triasa F.X, Yangd D , Lic H, Shengd Y, Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modelling, Computers & Fluids,Vol. 94, PP. 37-48,2014.
[14]             Third  J.R, and Müller C.R, Coupled LBM-DEM Simulations of Gas Fluidised Beds" in "The 14th International Conference on Fluidization – From Fundamentals to Products", Eds, ECI Symposium Series, Volume. http://dc.engconfintl.org/ fluidization_xiv/97,2013.
[15]             Yang H, Decai L,Xiaodong N,Shi Sh, Fully resolved simulation of particulate flows with heat transfer by smoothed profile-lattice Boltzmann method, International Journal of Heat and Mass Transfer,Vol. 126,PP 1164-1167,2018.
[16]             Gharibi F,Jafari S,Rahnama  M, Khalili M, Jahanshahi Javaran E, Simulation of flow in granular porous media using combined Lattice Boltzmann Method and Smoothed Profile Method, Computers & Fluids, Vol.177, PP.1-11,2018.
[17]             Mehrabi Gohari E,Sefid M, Jahanshahi Javaran E, Numerical simulation of the hydrodynamics of an inverse liquid–solid fluidized bed using combined Lattice Boltzmann and smoothed profile methods,Journal of Dispersion Science and Technology, Vol.38:10, PP.1471-1482, DOI: 10.1080/01932691.2016.1253482,2017.
[17]Escudero Guevara D., Bed height and material density effects on fluidized bed Hydrodynamics,Master of science thesis, Iowa State University, 2010.
[18]             Bhatnagar P.L, Gross E.P and Krook M, A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. A,Vol. 94-3  PP.511- 525,1954.
[19]             Succi  S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,Clarendon, Oxford, Chaps 1-6,2001.
[20]             Glowinski R, Pan T.W,  Hesla T.I and  Joseph D.D, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, Vol.25 PP.755–794,1999.
[21]             Mohamad A.A,  Kuzmin A, A critical evaluation of force term in lattice Boltzmann method, natural convection problems, Int. J. of Heat and Mass Transfer,Vol. 53 , PP.990–996,2010.
[22]                Jafari S,  Yamamoto R and  Rahnama.M, Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions, Physical Rev. E 83026702,2011.
[23]             Luo X, Maxey M.R and Karniadakis G.E, Smoothed profile method for particulate flows:   Error analysis and simulations, J. Computational Physics,Vol. 228 PP.1750–1769, 2009.
[24]             Richardson  J.F, Zaki W.N., Sedimentation and fluidization. part1. Trans. Inst. Chem. Eng,Vol. 32, PP. 35-53,1954.  
[25]             Khan A.R, Richardson J, F., Fluid–particle interactions and flow characteristics of fluidized beds and settling suspensions of spherical particles. Chem. Eng. Commun, Vol.78, PP.111-130, 1989.
[26]             Rhodes M., Introduction to Particle Technology ,2rd ed, John Wily &Sons Ltd, Chichester, UK, 2008.