[1]Bartosiewicz Y., Aidoun Z., Desevaux P., Mercadier Y., CFD-experiments integration in the evaluation of six turbulence models for supersonic ejector modeling. In Integrating CFD and Experiments Conference, Glasgow, UK , 2003.
[3] Bartosiewicz Y., Aidoun Z., Mercadier Y., Numerical Assessment of Ejector Operation for Refrigeration Applications Based on CFD. Applied Thermal Engineering, Vol. 26, pp. 604-612, 2006.
[4] Rusly E., Aye L., Charters W. W. S., Ooi A., CFD Analysis of Ejector in a Combined Ejector Cooling System. International Journal of Refrigeration, Vol. 28, pp. 1092-1101, 2005.
[5] Sriveerakul T., Aphornratana S., Chunnanond K., Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 1. Validation of the CFD Results. International Journal of Thermal Sciences, Vol. 46, pp. 812-822, 2007.
[6] Sriveerakul T., Aphornratana S., Chunnanond K., Performance Prediction of Steam Ejector Using Computational Fluid Dynamics: Part 2. Flow Structure of a Steam Ejector Influenced by Operating Pressures and Geometries. International Journal of Thermal Sciences, Vol. 46, pp. 823-833, 2007.
[7] Pianthong K., Seehanam W., Behnia M., Sriveerakul T., Aphornratana S., Investigation and Improvement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique. Energy Conversion and Management, Vol. 48, pp. 2556-2564, 2007.
[8] Ruangtrakoon N., Thongtip T., Aphornratana S., Sriveerakul T., CFD Simulation on the Effect of Primary Nozzle Geometries for a Steam Ejector in Refrigeration Cycle. International Journal of Thermal Sciences, Vol. 63, pp. 133-145, 2013.
[9] Zhu Y., Jiang P., Bypass Ejector with an Annular Cavity in the Nozzle Wall to Increase the Entrainment: Experimental and Numerical Validation. Energy, Vol. 68, pp. 174-181, 2014.
[10] H. Wu, Z. Liu, B. Han, Y. Li, Numerical Investigation of the Influences of Mixing Chamber Geometries on Steam Ejector Performance. Desalination, Vol. 353, pp. 15-20, 2014.
[11] Hakkaki-Fard A., Aidoun Z., Ouzzane M., A Computational Methodology for Ejector Design and Performance Maximisation. Energy Conversion and Management, Vol. 105, pp. 1291-1302, 2015.
[12] Mazzelli F., Little A. B., Garimella S., Bartosiewicz Y., Computational and Experimental Analysis of Supersonic Air Ejector: Turbulence Modeling and Assessment of 3D Effects. International Journal of Heat and Fluid Flow, Vol. 56, pp. 305-316, 2015.
[13] Ariafar K., Buttsworth D., Al-Doori Gh., Malpress R., Effect of Mixing on the Performance of Wet Steam Ejectors. Energy, Vol. 93, pp. 2030-2041, 2015.
[14] Omidvar A., Ghazikhani M., Modarres Razavi S. M. R., Entropy Analysis of a Solar-Driven Variable Geometry Ejector Using Computational Fluid Dynamics. Energy Conversion and Management, Vol. 119, pp. 435-443, 2016.
[15] Wang Ch., Wang L., Zhao H., Du Zh., Ding Z., Effects of Superheated Steam on Non-Equilibrium Condensation in Ejector Primary Nozzle. International Journal of Refrigeration, Vol. 67, pp. 214-226, 2016.
[16] Zucrow M. J., Hoffman J. D., Gas Dynamics Vol 2, Multidimensional Flow. pp. 160-163, Wiley, New York, 1977.
[17] FLUENT 6.0 User’s guide. FLUENT INC, Lebanon, NH, USA.
[18] Mazzelli F., Milazzo A., Performance Analysis of a Supersonic Ejector Cycle Working with R245fa. International Journal of Refrigeration, Vol. 49, pp. 7-92, 2015.