مطالعه خواص مکانیکی نانو مخروط‌های کربنی دو جداره تحت بارهای کششی و فشاری با استفاده از روش المان محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، موسسه اموزش عالی احرار، رشت، ایران

2 دانشیار، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

3 استادیار، گروه مهندسی مکانیک، واحد لنگرود، دانشگاه آزاد اسلامی، لنگرود، ایران

چکیده

در این مقاله، روش المان محدود برای مطالعه رفتار کمانش و خواص مکانیکی نانو مخروط­های کربنی دو جداره استفاده شده است. به این منظور، نانو مخروط­های دو جداره با طول­ها و زوایای مختلف و تحت شرایط تکیه­گاهی متفاوت مورد بررسی قرار می­گیرد. با توجه به شباهت بین ساختار نانوسازه­ها و قاب فضایی برای ساختار­های نانو، از روش مکانیک سازه­ای برای مطالعه رفتار مکانیکی نانومخروط­ها استفاده می گردد. در این روش، نانو مخروط­های کربنی به عنوان قاب فضایی در نظر گرفته می­شوند و برای مدل کردن اتم­ها و پیوند­ها به ترتیب از المان­های تیر و جرم استفاده می­شود. برای تعیین خواص المان­های تیر از برابری مکانیک سازه­ای و مکانیک مولکولی استفاده می­شود. نتایج نشان می­دهد که مدول الاستیسیته نانو مخروط­های کربنی دو جداره با افزایش زاویه رأس و افزایش طول کاهش می­یابد. همچنین با مقایسه تاثیر تغییرات در دو عامل طول و زاویه راس، زاویه رأس تاثیر بیشتری را روی نیروی فشاری بحرانی می­گذارد. نیروی فشاری بحرانی در نانو مخروط­های کربنی دو جداره با افزایش زاویه رأس نانومخروط، افزایش و با افزایش طول کاهش می­یابد.

کلیدواژه‌ها

موضوعات


  1. [1] Iijima S., Helical microtubules of graphitic carbon, Transactions of Nonferrous Metals Society, Vol. 354, No. 6348, pp. 56–58, 1991.

    [2] Kroto H. W., Heath J. R., O'Brien S. C., Curl R. F. and Smalley R. E., C60: Buckminsterfullerene, Nature, Vol. 318, No. 6042, pp. 162–163, 1985.

    [3] Kong X. Y., Ding Y., Yang R. and Wang Z. L., Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, Materials Science and Engineering: R: Reports Science, Vol. 303, No. 5662, pp. 1348–1351, 2004.

    1. [4] Lijima S., Ichihashi T. and Ando Y., Pentagons, heptagons and negative curvature in graphite microtubule growth, Chemical Physics Letters, Vol. 356, No. 6372, pp. 776–778, 1992.
    2. [5] Iijima S. and Ichihashi T., Single-shell carbon nanotubes of 1- nm diameter, Synthetic Metals, Vol. 363, No. 6430, pp. 603–605, 1993.
    3. 1.        [6] Yu S.-S. and Zheng W.-T., Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphenenanoribbons, Physics Letters A

     Nanoscale, Vol. 2, No. 7, pp. 1069–1082, 2010.

     [7] Yan J. W., Liew K. M. and He L. H., Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector, Nanotechnology, Vol. 24, No. 12, Article ID 125703, 2013.

    1.  [8] Krishnan A., Dujardin E., Treacy M. M. J., Hugdahl J., Lynum S. and Ebbesen T. W., Graphitic cones and the nucleation of curved carbon surfaces, Thin Solid Films, Vol. 388, No. 6641, pp. 451–454, 1997.

    [9] Naess S. N., Elgsaeter A., Helgesen G. and Knudsen K. D., Carbon nanocones: wall structure and morphology, Scienceand Technology of Advanced Materials, Vol. 10, No. 6, Article ID 065002, 2009.

    [10] Iijima S., Brabec C., Maiti A. and Bernholc J., Structural flexibility of carbon nanotubes, Journal of Chemical Physics, Vol. 104, No. 5, pp. 2089–2092, 1996.

    [11] Yakobson B. I., Campbell M. P., Brabec C. J. and Bernholc J., High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science, Vol. 8, No. 4, pp. 341–348, 1997

    [12] Hernandez E., Goze C., Bernier P., Rubio A., Elastic properties of C and BxCyNzcomposite nanotubes, Physical Review Letters, Vol. 80, No. 20, pp. 4502-4505, 1998.

    [13] C. M. Wang, V. B. C. Tan, Y. Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, Vol. 294, No. 4, pp. 1060-1072, 2006.

    [14] Hsu J. C., Chang R. P., Chang W. J., Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory, Physics Letters A, Vol. 372, No. 16, pp. 2757-2759, 2008.

    [15] Zhang Y. Y., Wang C. M., Tan V. B. C., Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics, Advances in Applied Mathematics and Mechanics, Vol. 1, No. 1, pp. 89-106, 2009.

    [16] Yakobson B. I., Brabec C. J., Bernholc J., Nanomechanics of carbon tubes, instabilities beyond linear response, Physical Review Letters, Vol. 76, No. 14, pp. 2511-2514, 1996.

    [17] Ru C. Q., Effective bending stiffness of carbon nanotubes, Physical Review B, Vol. 62, No. 15, pp. 9973-9976, 2000.

    [18] Ru C. Q., Elastic buckling of single-walled carbon nanotube ropes under high pressure, Physical Review B, Vol. 62, No. 15, pp. 10405-10408, 2000.

    [19] Ansari R., Rouhi S., Atomistic finite element model for axial buckling of single-walled carbon nanotubes, Physica E, Low-Dimensional Systems and Nanostructures, Vol. 43, No. 1, pp. 58-69, 2010.

    [20] Rouhi S., Ansari R., Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets, Physica E, Vol. 44, No. 4, pp. 764-772, 2012.

    [21] Rappe A. K., Casewit C. J., Colwell K. S., Goddard Iii W. A., Skiff W. M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, Vol. 114, No. 25, pp. 10024-10035, 1992.

    [22] Hu Y., Liew K. M., He X. Q., Li Z. and Han J., Free transverse vibration of single-walled carbon nanocones, Journal of the American Chemical Society, Vol. 50, No. 12, pp. 4418–4423, 2012.

    [23] Yan J. W., Liew K. M. and He L. H., Ultra-sensitive analysisof a cantilevered single-walled carbon nanocone-based massdetector, Nanotechnology, Vol. 24, No. 12, Article ID 125703,2013.

    [24] Fakhrabadi M. M. S., Khani N., Omidvar R. and Rastgoo A., Investigation of elastic and buckling properties of carbonnanocones using molecular mechanics approach, Computational Materials Science, Vol. 61, pp. 248–256, 2012

    [25] Ansari R. and Rouhi S., Atomisticfinite element model for axial buckling of single-walled carbonnanotubes, PhysicaE:Low-Dimensional System sand Nanostructures,Vol.43,No.1,pp.58–69,2010.

     [26] Ansari R., Rouhi S. and Aryayi M., On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models, International Journal of Modern Physics,  Vol. 30 (2016) 1650007 (20 pages).

     [27] Shahnazari A., Ansari R. and Rouhi S., On the stability characteristics of zigzag phosphorene nanotubes: A finite element investigation, J. Alloys Compd, Vol. 702, pp. 388–398, 2017.

     [28] Yeong-Bin Yang and Shyh-Rong Kuo, Theory and analysis of nonlinear framed structures, Prentice Hall, United States of America, 1994.