بررسی عملکرد اگزرژی-اقتصادی یک سیستم تولید سه گانه بر مبنای پیل سوختی اکسید جامد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 مربی، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد لشت نشاء-زیباکنار، لشت نشاء، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

دراین تحقیق یک سیستم ترکیبی شامل چرخه پیل سوختی اکسید جامد، مبادله کن گرما تولید آب گرم خانگی و چیلر جذبی تک مرحله ای آب-آمونیاک به منظور تولید همزمان قدرت، برودت و آب گرم شبیه سازی و از منظر انرژی، اگزرژی و اگزرژی-اقتصادی مورد بررسی قرار می­گیرد و پس از ارائه نتایج در حالت ورودی پایه، اثر تغییر چگالی جریان پیل سوختی و ضریب مصرف سوخت بر روی عملکرد سیستم مورد بررسی قرار می­گیرد. نتایج حالت پایه حاکی از آن است که کار کلی 4/418 کیلووات، بازگشت ناپذیری کلی 1/650 کیلووات و بازده  اگزرژی کلی  378/0 می­باشد. همچنین مبادله کن گرما هوا، مبادله کن گرما آب و پیل سوختی به عنوان اجزایی معرفی می­شوند که باید بیشتر از سایر اجزا از منظر اگزرژی-اقتصادی مورد توجه قرار بگیرند چون تقریبا بیشترین مقدار نرخ هزینه متعلق به این اجزا می­باشد.

کلیدواژه‌ها

موضوعات


[1]   Chan S., Ho H., Tian Y., Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of power sources, Vol. 109, No. 1, pp. 111-120, 2002.
[2]   Bavarsad P. G., Energy and exergy analysis of internal reforming solid oxide fuelcell–gas turbine hybrid system, International Journal of Hydrogen Energy, Vol. 32, No. 17, pp. 4591-4599, 2007.
[3]   Pirkandi J., Mahmoodi M., Ommian M., An optimal configuration for a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system based on thermo-economic modelling, Journal of Cleaner Production, Vol. 144, pp. 375-386, 2017.
[4]   Aminyavari M., Mamaghani A. H., Shirazi A., Najafi B., Rinaldi F., Exergetic, economic, and environmental evaluations and multi-objective optimization of an internal-reforming SOFC-gas turbine cycle coupled with a Rankine cycle, Applied Thermal Engineering, Vol. 108, pp. 833-846, 2016.
[5]   Gholamian E., Zare V., comparative A thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles, Energy Conversion and Management, Vol. 117, pp. 150-161, 2016.
[6]   Ebrahimi M., Moradpoor I., Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC), Energy Conversion and Management, Vol. 116, pp. 120-133, 2016.
[7]   Ma S., Wang J., Yan Z., Dai, Y. B. Lu, Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia–water mixture, Journal ofPower Sources, Vol. 196, No. 20, pp. 8463-8471, 2011.
[8]   Sadeghi M., Chitsaz A., Mahmoudi S., M. A. Rosen, Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell, Energy, Vol. 89, pp. 191.2015-2040
[9]   L. Khani, S. M. S. Mahmoudi, A. Chitsaz, M. A. Rosen, Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell, Energy, Vol. 94, pp. 64-77, 2016.
[10]  M. Mortazaei, M. Rahimi, A comparison between two methods of generating power, heat and refrigeration via biomass based Solid Oxide Fuel Cell: A thermodynamic and environmental analysis, Energy Conversion and Management, Vol. 126, pp. 132-141, 2016.
[11]  E. Gholamian, V. Zare, S. M. Mousavi, Integration of biomass gasification with a solid oxide fuel cell in a combined cooling, heating and power system: A thermodynamic and environmental analysis, International Journal of Hydrogen Energy, Vol. 41, No. 44, pp. 20396-20406, 2016.
[12]  J. Zhang, H. Cho, A. Knizley, Evaluation of financial incentives for combined heat and power (CHP) systems in US regions, Renewable and Sustainable Energy Reviews, Vol. 59, pp. 738-762, 2016.
[13]  Liu M., Shi Y., Fang F., Combined cooling, heating and power systems: A survey, Renewable and Sustainable Energy Reviews, Vol. 35, pp. 1-22, 2014.
[14]  Tempesti D., Fiaschi D., Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy, Energy, Vol. 58, pp. 45-51, 2013.
[15]  Boyaghchi, F. A.  Heidarnejad P., Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application, Energy Conversion and Management, Vol. 97, pp. 224-234, 2015.
[16]  Ahmadi P., Dincer, I. Rosen M. A., Thermodynamic modeling and multi-objective evolutionary-based optimization of a new multigeneration energy system, Energy Conversion and Management, Vol. 76, pp. 282-300, 2013.
[17]  Khaljani M., Saray R. K., Bahlouli K., Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, Energy Conversion and Management, Vol. 97, pp. 154-165, 2015.
[18]  Şencan A., Yakut K. A., Kalogirou S. A., Exergy analysis of lithium bromide/water absorption systems, Renewable energy, Vol. 30, No. 5, pp. 645-657, 2005.
[19] Kaushik S., Arora A., Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems, International journal of Refrigeration, Vol. 32, No. 6, pp. 1247-1258, 2009.
[20]  Farshi L. G., Mahmoudi S. S., Rosen M., Yari M., M. Amidpour, Exergoeconomic analysis of double effect absorption refrigeration systems, Energy Conversion and Management, Vol. 65, pp. 13-25, 2013.
[21]  Aman, J.  Ting D.-K., Henshaw P., Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system, Applied Thermal Engineering, Vol. 62, No. 2, pp. 424-432, 2014.
[22]  A. Chitsaz, S. M. S. Mahmoudi, M. A. Rosen, Greenhouse gas emission and exergy analyses of an integrated trigeneration system driven by a solid oxide fuel cell, Applied Thermal Engineering, Vol. 86, pp. 81-90, 2015.
[23]  Ranjbar F., Chitsaz A., Mahmoudi S., Khalilarya S., Rosen M. A., Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell, Energy Conversion and Management, Vol. 87, pp. 318-327, 2014.
[24] Bejan A., Tsatsaronis G., Thermal design and optimization: John Wiley&Sons, 1996.
[25]  Colpan C. O. Thermal Modelling of Solid Oxide Fuel-cell Based Biomass Gasification Systems,  Thesis, Carleton University, 2009.
[26]  Bahlouli K. Saray R. K., Sarabchi N., Parametric investigation and thermo-economic multi-objectiveoptimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine, Energy, Vol. 86, pp. 672-684, 2015.
[27]  Lazzaretto A,. Tsatsaronis G., SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy, Vol. 31, No. 8, pp. 1257-1289, 2006.