[1] Aifantis, E. C. Strain gradient interpretation of size effects. In Fracture Scaling,pp. 299-314, 1999.
[2] Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C., and Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, Vol. 39, No.10, pp. 2731-2743, 2002.
[3] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, Vol. 54, No.9, pp. 4703-4710, 1983.
[4] Toupin, R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, Vol. 11, No.1, pp. 385-414, 1962.
[5] Lam, D. C., Yang, F., Chong, A. C. M., Wang, J., and Tong, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, Vol. 51, No.8, pp. 1477-1508,2003.
[6] Askari, A. R., and Tahani, M. Presenting a size-dependent electro-mechanical model for rectangular plates-based resonant micro-sensors based on modified couple stress theory. Modares Mechanical Engineering, Vol. 14, No.8, pp. 121-130, 2014.
[7] Abdel-Rahman, E. M., Younis, M. I., and Nayfeh, A. H. Characterization of the mechanical behavior of an electrically actuated microbeam. Journal of Micromechanics and Microengineering, Vol. 12, No.6, pp. 759-766, 2002.
[8] Yin, L., Qian, Q., and Wang, L. Size effect on the static behavior of electrostatically actuated microbeams. Acta Mechanica Sinica, Vol. 27, No.3, pp. 445-451 , 2011.
[9] Rahaeifard, M., Kahrobaiyan, M. H., Asghari, M., and Ahmadian, M. T. Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sensors and Actuators A: Physical, Vol. 171, No.2, pp. 370-374, 2011.
[10] Kong, S. L. Size effect on pull-in behaviors of electrostatically actuated cantilever micro-beams. In Applied Mechanics and Materials, Vol. 300, pp. 889-892, 2013.
[11] Kuang, J. H., and Chen, C. J. Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Mathematical and computer modelling, Vol. 41, No.13, pp. 1479-1491, 2005.
[12] Beni, Y. T., Koochi, A., and Abadyan, M.Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No.4, pp. 979-988, 2011.
[13] Soroush, R., Koochi, A., Kazemi, A. S., Noghrehabadi, A., Haddadpour, H., and Abadyan, M. Investigating the effect of Casimir and van der Waals attractions on the electrostatic pull-in instability of nano-actuators. Physica scripta, Vol. 82, No.4, 2010.
[14] Koochi, A., Kazemi, A., Khandani, F., and Abadyan, M. Influence of surface effects on size-dependent instability of nano-actuators in the presence of quantum vacuum fluctuations. Physica Scripta, Vol.85, No.3, 2012.
[15] Noghrehabadi, A., and Eslami, M. Analytical study on size-dependent static pull-in analysis of clamped–clamped nano-actuators in liquid electrolytes. Applied Mathematical Modelling, Vol. 40, No.4, pp. 3011-3028, 2016.
[16] Ghalambaz, M., Noghrehabadi, A., Abadyan, M., Beni, Y. T., Abadi, A. R. N., and Abadi, M. N. A new power series solution on the electrostatic pull-in instability of nano cantilever actuators. Procedia Engineering, Vol. 10, pp. 3708-3716, 2011.
[17] Reddy, J. N. Energy principles and variational methods in applied mechanics. John Wiley & Sons, 2017.
[18] Park, S. K., and Gao, X. L. Bernoulli–Euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, Vol. 16, No.11, pp. 2355-2359, 2006.
[19] Gurtin, M. E., and Murdoch, A. I. Surface stress in solids. International Journal of Solids and Structures, Vol. 14, No.6, pp. 431-440, 1978.
[20] Huang, J. M., Liew, K. M., Wong, C. H., Rajendran, S., Tan, M. J., and Liu, A. Q. Mechanical design and optimization of capacitive micromachined switch. Sensors and Actuators A: Physical, Vol. 93, No.3, 273-285, 2001.
[21] Israelachvili, J. N. Intermolecular and Surface Forces, Academic, 1992.
[22] Jabbari, G., Shabani, R., and Rezazadeh, G. Frequency response of an electrostatically actuated micro resonator in contact with incompressible fluid. Microsystem Technologies, Vol. 23, No.7, pp. 2381-2391, 2017.
[23] Wazwaz, A. M. A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, Vol. 102, No.1, pp. 77-86, 1999.
[24] Rach, R. A convenient computational form for the Adomian polynomials. Journal of mathematical analysis and applications, Vol. 102, No.2, pp. 415-419, 1984.
[25] Wazwaz, A. M. The numerical solution of sixth-order boundary value problems by the modified decomposition method. Applied Mathematics and Computation, Vol. 118, No.2, pp. 311-325, 2001.