[1] Mukhopadhyay, P., Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys, ISRN Metallurgy, Vol. 2012, pp. 1-15, 2012.
[2] Fridlyander, I. N., Sister, V. G., Grushko, O. E., Berstenev, V. V., Sheveleva, L. M., and Ivanova, L. A., Aluminum Alloys: Promising Materials in the Automotive Industry, Metal Science and Heat Treatment, Vol. 44, No. 9, pp. 365-370, 2002.
[3] Zhang, X., Chen, Y., and Hu, J., Recent advances in the development of aerospace materials, Progress in Aerospace Sciences, Vol. 97, pp. 22-34, 2018.
[4] Mohan, D. and Schloar, P. G., Friction stir welding tools and overview, International Journal of IT, Engineering and Applied Sciences Research, Vol. 3, No. 4, pp. 11-15, 2014.
[5] Esmaily, M., Mortazavi, N., Osicowicz, W., Hindsefelt, H., Svenssson, J. E., Halvarsson, M., Martin, J. and Johanson, L. G., Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles, Materials & Design, Vol. 108, pp. 114-125, 2016.
[6] Xu, W., Luo, Y., Zhang, W., and Fu, M., Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate, Journal of Materials Science & Technology, Vol. 34, No. 1, pp. 173-184, 2018.
[7] Kumar, K., Kailas, S. V., and Srivatsan, T. S., "Influence of Tool Geometry in Friction Stir Welding," Materials and Manufacturing Processes, Vol. 23, No. 2, pp. 188-194, 2008.
[8] Wang, F. F., Li, W. Y., Shen, J., Hu, S. Y., and dos Santos, J. F., Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy, Materials & Design, Vol. 86, pp. 933-940, 2015.
[9] Li, W. Y., Fu, T., Hutsch, L., Hilgert, J., Wang, F. F., Santos, J. F. and Huber, N., Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31, Materials & Design, Vol. 64, pp. 714-720, 2014.
[10] Chen, J., Fujii, H., Sun, Y., Morisada, Y., and Kondoh, K., Optimization of mechanical properties of fine-grained non-combustive magnesium alloy joint by asymmetrical double-sided friction stir welding, Journal of Materials Processing Technology, Vol. 242, pp. 117-125, 2017.
[11] Chen, J., Fujii, H., Sun, Y., Morisada, Y., and Ueji, R., Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints, Materials Science and Engineering: A, Vol. 580, pp. 83-91, 2013.
[12] Vilaça, P. and Thomas, W., Friction Stir Welding Technology, Vol. 8, pp. 85-124, 2011.
[13] Sued, M. K., Pons, D., Lavroff, J., and Wong, E. H., Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process, Materials & Design (1980-2015), Vol. 54, pp. 632-643, 2014.
[14] کریمی ایوانکی م.، افشاری د. و صیدی ح.، بررسی تاثیر هندسه ابزار ماسورهای در جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061. پانزدهمین کنفرانس ملی و چهارمین کنفرانس بین المللی مهندسی ساخت و تولید، تهران، ایران، 1397. [Online].
[15] Bryson, W. E., Heat Treating H13 Tool Steel, in Heat Treatment, Selection, and Application of Tool Steels: Carl Hanser Verlag GmbH & Co. KG, 2005, pp. 63-68.
[16] Moreira, P. M. G. P., Santos, T., Tavares, S. M. O., Richter-Trummer, V., Vilaça, P., and de Castro, P. M. S. T., Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Materials & Design, Vol. 30, No. 1, pp. 180-187, 2009.
[17] Rajakumar, S. and Balasubramanian, V., Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters, Materials & Design, Vol. 40, pp. 17-35, 2012.
[18] Liu, H. J., Fujii, H., Maeda, M., and Nogi, K., Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, Journal of Materials Processing Technology, Vol. 142, No. 3, pp. 692-696, 2003.
[19] Bussu, G. and Irving, P. E., The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints, International Journal of Fatigue, Vol. 25, No. 1, pp. 77-88, 2003.
[20] Nejad, S. G., Yektapour, M., and Akbarifard, A., Friction stir welding of 2024 aluminum alloy: Study of major parameters and threading feature on probe, Journal of Mechanical Science and Technology, Vol. 31, No. 11, pp. 5435-5445, 2017.
[21] Richter-Trummer, V., Suzano, E., Beltrão, M., Roos, A., dos Santos, J. F., and de Castro, P. M. S. T., Influence of the FSW clamping force on the final distortion and residual stress field, Materials Science and Engineering: A, Vol. 538, pp. 81-88, 2012.
[22] Paik, J., Mechanical properties of friction stir welded aluminum alloys 5083 and 5383, International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 1, pp. 39-49, 2009.