[1] Ball C. G. Uddin, M. Pollard A., High resolution turbulence modelling of airflow in an idealized human extra-thoracic airway, Computers & Fluids, Vol. 37, pp. 943–964, 2008.
[2] Heenan A. F., Matida E., Pollard A., Finlay W. H., Experimental measurements and computational modeling of the flow field in an idealized extra-thoracic airway, Exp Fluids, Vol. 35, pp. 70–84, 2003.
[3] Kleinstreuer C., Zhang Z., Laminar-to-turbulent fluid-particle flows in a human airway model, Int. J Multiphase Flow, Vol. 29, pp. 271–89, 2003.
[4] Zhang Z., Kleinstreuer C., Donohue J., Kim C., Comparison of micro-and nano-size particle depositions in a human upper airway model, Aerosol Sci, Vol. 36, pp. 211–33, 2005.
[5] Zhang Z., Kleinsteuer C., Species heat and mass transfer in a human upper airway model, Int. J. Heat Mass Transfer, Vol. 45, pp. 55–68, 2003.
[6] Matida E., Finlay W., Lange C., Grgic B., Improved numerical simulation of aerosol deposition in an idealized mouth–throat, Aerosol Sci, Vol.35, pp. 1–19, 2004.
[7] Stapleton K. W., Guentsch E., Hoskinson M. K. and Finlay W. H., The suitability of k–turbulence modeling for aerosol deposition in the mouth and throat: acomparison with experiment, J Aerosol Sci., Vol. 31, No. 6, pp. 739–49, 2000.
[8] Taylan M., Can O., Cetincakmak M. G., Ozbay M., Effect of Airway Dynamics on the Development of Larynx Cancer, Laryngoscope, Vol. 126, 2016.
[9] Kaushik V., Ghosh S., Das G., Das P. K., CFD simulation of core annular flow through sudden contraction and expansion, J Petrol Scı Eng.Vol.86, pp. 153–164, 2012.
[10] Lin C. L., Tawhai M. H., McLennan G., Hoffman E. A., Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways, Respir Physiol Neurobiol, Vol.157, pp. 295–309, 2007.
[11] Kumar H., Spence C. J., Tawhai M. H., Modeling of pharyngeal pressure dur-ing adult nasal high flow therapy, Respir Physiol Neurobiol, 2015.
[12] Carrigy N. B., Carey J. P., Martin A. R., Simulation of muscle and adipose tissue deformation in the passive human pharynx, Comput Methods Bio-mech Biomed Engin,pp. 1–9, 2015.
[13] Hiramatsu H., Tokashiki R., Suzuki M., Usefulness of three-dimensional computed tomography of the larynx for evaluation of unilateral vocal fold paralysis before and after treatment: technique and clinical applications, Eur Arch Otorhinolaryngol, Vol. 265, pp. 725–730, 2008.
[15] Chen T., Chodara A. M., Sprecher A. J., Fang F., Song W., Tao C. H., A new method of reconstructing the human laryngeal architecture using micro-MRI, J. Voice, Vol. 26, pp. 55–62, 2012.
[16] Zheng X., Mittal R., Xue Q., Bielamowicz S., Direct-numerical simulation of the glottal jet and vocal-fold dynamics in athree-dimensional laryngeal model, J. Acoust. Soc. Am, Vol.130, pp. 404–415, 2011.
[17] Švec J. G., Schutte H. K., Kymographic imaging of laryngeal vibrations, Curr. Opin. Otolaryngol Head Neck Surg; Vol.20, pp. 458–465, 2012.
[18] Zhang, Z. Neubauer, J. Berry, D. A., Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds, J Acoust Soc Am , Vol.120, pp. 2841–2849, 2006.
[19] Murray P. R., Thomson S. L., Vibratory responses of synthetic, self-oscillating vocal fold models, J Acoust Soc Am, Vol.132, pp. 3428–3438, 2012.
[20] Yang, J. Wang, X. Krane, M. Lucy. Zhang T., Fully-Coupled Aeroelastic Simulation with Fluid Compressibility - for Application to Vocal Fold Vibration, Comput. Methods. Appl. Mech. Engineering. Vol. 315, pp. 584-606, 2016.
[21] Gemci T., Ponyavin V., Chen Y., Chen H., Collins Computational model of airflow in upper 17 generations of human respiratory tract, Journal of Biomechanics, Vol.41, pp. 2047–2054, 2008.
[23] Lin C. L., Tawhai M. H.,
McLennan G. and Hoffman E. A., Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways,
Respir Physiol Neurobiol. Vol. 157, pp. 295–309, 2007.
[24] Tena A. F., Francos J. F., Alvarez E., Casan P., A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans, Engineering Applications of Computational Fluid Mechanics, Vol. 9, pp. 187-198, 2015.
[26] Sul B. S., Wallqvist A., Morris M. J., Reifman J., Pakesh V., A computational study of the respiratory airflow characteristics in normal and obstructed human airways, Computers in Biology and Medicine, Vol. 52, pp. 130-143, 2014.
[27] Martonen B., Zhang Z., Yu G., Musante C., Three-dimensional computer modeling of the human upper respiratory tract, Cell Biochemistry and Biophysics, Vol. 35(3), pp. 255-261, 2001.
Tsega D., Katiyar V. K., A numerical simulation of inspiratory airflow in human during exercise at sea level and high attitude, Journal of Applied and Computational Mechanics, Vol. 5(1), pp. 70-76, 2019.