[1] Deatsch A. E., Evans B. A., Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials, Vol. 354, pp. 163-172, 2014.
[2] Wang Q., Deng Z., Liu J., Theoretical evaluations of magnetic nanoparticle-enhanced heating on tumor embedded with large blood vessels during hyperthermia, Journal of Nanoparticle Research, Vol. 14, No. 7, p. 974, 2012.
[3] Gonzales-Weimuller M., Zeisberger M., Krishnan K. M., Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia, Journal of magnetism and magnetic materials, Vol. 321, No. 13, pp. 1947-1950, 2009.
[4] Hooshmand P., Moradi A., Khezry B., Bioheat transfer analysis of biological tissues induced by laser irradiation, International Journal of Thermal Sciences, Vol. 90, pp. 214-223, 2015.
[5] Gupta P. K., Singh J., Rai K., Numerical simulation for heat transfer in tissues during thermal therapy, Journal of Thermal Biology, Vol. 35, No. 6, pp. 295-301, 2010.
[6] Ne’mati S. M. A., Ghassemi M.,Shahidian A., Numerical Investigation of Drug Delivery to Cancerous Solid Tumors by Magnetic Nanoparticles Using External Magnet, Transport in Porous Media, Vol. 119, No. 2, pp. 461-480, 2017.
[7] Johannsen M., Thiesen B., Wust P., Jordan A., Magnetic nanoparticle hyperthermia for prostate cancer, International Journal of Hyperthermia, Vol. 26, No. 8, pp. 790-795, 2010.
[8] Johnston B. M., Johnston P. R., Corney S., Kilpatrick D., Non-Newtonian blood flow in human right coronary arteries: steady state simulations, Journal of biomechanics, Vol. 37, No. 5, pp. 709-720, 2004.
[9] Nacev A., Beni C., Bruno O., Shapiro B., The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields, Journal of magnetism and magnetic materials, Vol. 323, No. 6, pp. 651-668, 2011.
[10] Ne’mati S. M. A., Ghassemi M., Shahidian A., Numerical investigation of non-uniform magnetic field effects on the blood velocity and magnetic nanoparticles concentration inside the vessel, Journal of Mechanical Science and Technology, Vol. 31, No. 4, pp. 1657-1663, 2017.
[11] Chien S., Shear dependence of effective cell volume as a determinant of blood viscosity, Science, Vol. 168, No. 3934, pp. 977-979, 1970.
[12] Brambatti V. M., de Andrade C. R., Zaparoli E. L., Numerical analysis of blood flow viscosity models, Momentum, Vol. 10, p. 1, 2009.
[13] Fox R. W., Mcdonald A. T., Introduction to Flud Mechanics. John Wiley & Sons, Inc., 2004.
[14] Habibi M. R., Ghasemi M., Numerical study of magnetic nanoparticles concentration in biofluid (blood) under influence of high gradient magnetic field, Journal of Magnetism and Magnetic Materials, Vol. 323, No. 1, pp. 32-38, 2011.
[15] Habibi M. R., Ghassemi M., Shahidian A., Investigation of Biomagnetic Fluid Flow Under Nonuniform Magnetic Fields, Nanoscale and Microscale Thermophysical Engineering, Vol. 16, No. 1, pp. 64-77, 2012.
[16] Bergman T. L., Incropera F. P., Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[17] Wang J., Simulation of Magnetic Nanoparticle Hyperthermia in Prostate Tumors, MSc. Thesis, John Hopkins University, 2014.
[18] Moon T. Y., brainNek: Modeling Laser-Induced Thermal Therapy for Brain Cancer with Spectral Elements on GPUs, BSc. Thesis, Rice University, 2014.
[19] Habibi M. R., Ghassemi M., Hamedi M. H., Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream, Journal of Magnetism and Magnetic Materials, Vol. 324, No. 8, pp. 1473-1482, 2012.
[20] Pankhurst Q. A., Connolly J., Jones S., Dobson J., Applications of magnetic nanoparticles in biomedicine, Journal of physics D: Applied physics, Vol. 36, No. 13, p. R167, 2003.
[21] Hall J. E., Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences, 2015.
[22] Soni S., Tyagi H., Taylor R. A., Kumar A., Effect of Nanoparticle Concentration on Thermal Damage in Nanoparticle-Assisted Thermal Therapy, in 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, Biopolis, Singapour, 2016.