بررسی تجربی سوراخکاری آلیاژ آلومینیوم 6061-T6به روش های روانکاری خشک و کمینه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه علم و صنعت و ایران، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه علم و صنعت و ایران، تهران، ایران

چکیده

در فرآیند سوراخکاری کیفیت سطح ، نیروهای ماشینکاری، مکانیزم تشکیل و اندازه پلیسه (طول و ضخامت)، سایش و عمر ابزار و همچنین نوع تراشه ها از شاخصه‌های مهم در تعیین کیفیت سوراخکاری  می‌باشند که  اطلاعات کمی در مورد اثر روانکاری کمینه بر آنها موجود است. لذا، بر اساس مطالعات صورت گرفته، هدف از این پژوهش، بررسی تجربی اثرات روش روانکاری کمینه بر نیروی پیشروی، شکل، طول پلیسه، تقسیم بندی سطح تراشه و میانگین زبری سطح در سوراخکاری آلیاژ آلومینیوم  6061-T6 و مقایسه نتایج با روش سوراخکاری خشک است.  بر اساس مشاهدات آزمایشگاهی، افزایش سرعت و نرخ پیشروی در حالت‌های خشک و روانکاری کمینه منجر به کاهش طول پلیسه شده، ولی، تاثیر روش روانکاری کمینه در کاهش طول پلیسه در سرعتهای برشی‌ کم مشهود است. مضافا در سوراخکاری خشک، میانگین زبری سطح کمتری مشاهده شد. سطح آزاد تراشه‌های جمع آوری شده در سوراخکاری خشک به نسبت حالت روانکاری کمینه دارای صافی سطح بیشتر و تعداد شیا‌رهای موازی کمتری می باشد که نشان دهنده سختی بیشتر در تراشه ها و نیروی بیشتر مورد نیاز جهت عملیات براده برداری در سوراخکاری خشک است.

کلیدواژه‌ها

موضوعات


[1]       Gillespie L. R. K., A quantitative approach to vibratory deburring effectiveness, SME Tech. Report., 1975.
 [2]       Lee S., Choi H., Kim G., Choi Y., and Ko S. L., Micro Deburring Technology Using Ultrasonic Vibration with Abrasive,Proceedings of the ISAAT, International Symposium on Advances in Abrasive Technology, pp. 477-482, 2004.
[3]      Koelsch J. R., Divining edge quality by reading the burrs, Quality, Vol. 40, No. 13, pp. 24‐28, 2001.
[4]      Kim J., Min S., and Dornfeld D. A., Optimization and control of drilling burr formation of AISI 304L and AISI 4118 based on drilling burr control charts, International Journal of Machine Tools and Manufacture, Vol. 41, No. 7, pp. 923‐936, 2001.
[5]      Niknam S.A.,ZedanY., and Songmene V., Machining Burrs Formation & Deburring of Aluminium Alloys, Light Metal Alloys Applications ed, pp. 99‐122, 2014.
[6]      Gillespie L, The battle of the burr: new strategies and new tricks, Manufacturing Engineering(USA), Vol. 116, No. 2, pp. 69‐70, 1996.
[7]      Niknam S. A., Burrs understanding, modeling and optimization during slot milling of aluminium alloys, Ph.D. Thesis, École de technologie supérieure, 2013.
[8]      Niknam S. A. and Songmene V.,Factors governing burr formation during high-speed slot milling of wrought aluminium alloys, Proceeding of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, No. 8, pp. 1165‐1179, 2013.
[9]      Niknam S. A., Burrs Understanding, Modeling and Optimization during Slot Milling of Aluminium Alloys,Ph.D. Thesis, École de Technologie Superieure, Universite du Quebec, 2013.
[10]    Niknam S. A. and Songmene V., Deburring and edge finishing of aluminum alloys: A review, 12th International conference on Aluminium (INALCO), Montreal, QC,Canada, 2013.
[11]    Niknam S. A., Khettabi R., and Songmene V., Machinability and Machining of Titanium Alloys: A Review,in Machining of Titanium Alloys, ed: Springer Berlin Heidelberg,  pp. 1-30, 2014.
[12]    Niknam S. A., Wygowski W., Balazinski M., and Songmene V., Milling Burr Formation and Aavoidance, Machinability of Advanced Materials, J. P. Davim, Ed., ed London, UK: ISTE Wiley, pp. 57-94, 2014.
[13]    Niknam S. A. and Songmene V., Analytical modelling of slot milling exit burr size, The International Journal of Advanced Manufacturing Technology, Vol. 73, No. 1-4, pp. 421‐432, 2014.
[14]    Aspinwall D., Dewes R., and Mantle A., The machining of γ-TiAI intermetallic alloys, CIRP Annals-Manufacturing Technology, Vol. 54, No. 1, pp. 99‐104, 2005.
[15]      Dasch J. M., Ang C. C., Wong C. A., Cheng Y. T., Weiner A. M., Lev L. C., et al., A comparison of five categories of carbon-based tool coatings for dry drilling of aluminum, Surface and Coatings Technology, Vol. 200, No. 9, pp. 2970‐2977, 2006.
[16]      Dhar N., Islam M., Islam S., and Mithu M., The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel, Journal of Materials Processing Technology, Vol. 171, No. 1, pp. 93‐99, 2006.
[17]      Khan M., Mithu M., and Dhar N. R., Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid, Journal of materials processing Technology, Vol. 209, No. 15, pp. 5573‐5583, 2009.
[18]      Najiha M. and MM R., Experimental study on minimum quantity lubrication in end milling of AA6061-T6 using tialn coated carbide tools, International Journal of Automotive and Mechanical Engineering (IJAME), Vol. 11, pp. 2771‐2785, 2015.
[19]      Khanna N., Garay A., Iriarte L. M., Soler D., Sangwan K. S., and Arrazola P. J., Effect of heat treatment conditions on the machinability of Ti64 and Ti54M alloys,Procedia CIRP, Vol. 1, pp. 477‐482, 2012.
[20]      Gillespie L. and Blotter P., Formation and properties of machining burrs, J. Eng. Ind.(Trans. ASME, B), Vol. 98, No. 1, pp. 66‐74, 1976.
[21]      Silva L. R.,. Corrêa E. C, Brandão J. R., and de Ávila R. F., Environmentally friendly manufacturing: Behavior analysis of minimum quantity of lubricant-MQL in grinding process, Journal of Cleaner Production, 2013.
[22]      Davim J., Sreejith P., Gomes R., and Peixoto C., Experimental studies on drilling of aluminium (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 220, No. 10, pp. 1605‐1611, 2006.
[23]      Zedan Y., Niknam S.A., Djebara A., and Songmene V., Burr Size Minimization When Drilling 6061-T6 Aluminum Alloy, ASME 2012 International Mechanical Engineering Congress and Exposition, November 9-15, 2012,  Houston, TX, USA, pp. 1053-1059.
[24]      Braga D. U., Diniz A. E., Miranda G. W., and Coppini N. L., Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys, Journal of Materials Processing Technology, Vol. 122, No. 1, pp. 127‐138, 2002.
[25]      Wakabayashi T., Suda S., Inasaki I., Terasaka K., Musha Y., and Toda Y., Tribological action and cutting performance of MQL media in machining of aluminum, CIRP Annals-Manufacturing Technology, Vol. 56, No. 1, pp. 97‐100, 2007.
[26]      Kishawy H., Dumitrescu M., Ng E.-G., and Elbestawi M., Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, International Journal of Machine Tools and Manufacture, Vol. 45, No. 2, pp. 219‐227, 2005.
[27]  Hussain M., Taraman K., Filipovic A., and Garren I., Experimental Study to Analyze the Workpiece Surface Temperature in Deep Hole Drilling of Aluminum Alloy Engine Blocks Using MQL Technology, J. Achievement Mat. Manuf. Eng, Vol. 31, pp. 485-490, 2008.
[28]   Okokpujie I. P., Ikumapayi O. M., Okonkwo U. C., Salawu E. Y., Afolalu S. A., Dirisu J. O., et al., Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools, Open Engineering, Vol. 7, pp. 461-469, 2017.
[29]   A. H. Ghasemi, A. M. Khorasani, and I. Gibson, Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075, Materials, Vol. 11, pp. 140, 2018.
[30]   Gupta M. K., Mia M., Singh G., Pimenov D. Y., Sarikaya M., and Sharma V. S., Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075-T6 alloy,The International Journal of Advanced Manufacturing Technology, Vol. 101, No. 1-4, pp. 55-69, 2019.
[31]   Mia M., Singh G., Gupta M. K., and Sharma V. S., Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6, Precision Engineering, Vol.53, pp-289-899, 2018.
[32]   Okokpujie I., Ohunakin O., Bolu C., and Okokpujie K., Experimental data-set for prediction of tool wear during turning of Al-1061 alloy by high speed steel cutting tools, Data in brief, Vol. 18, pp. 1196-1203, 2018.
[33]   Singh G., Sharma V. S., and Gupta M. K., Sustainable drilling of aluminium 6061-T6 alloy by using nano-fluids and Ranque-Hilsch vortex tube assisted by MQL: an optimization approach, International Journal of Machining and Machinability of Materials, Vol. 20, pp. 252-273, 2018.
[34]   Kouam J., Songmene V., Zedan Y., A. Djebara, and R. Khettabi, On chip formation during drilling of cast aluminum alloys, Machining Science and Technology, Vol. 17, No. 2, pp. 228‐245, 2013.
[35]   Lauderbaugh L., Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach, Journal of Materials Processing Technology, Vol. 209, No. 4, pp. 1909‐1919, 2009.
[36]   Aurich J. C., Dornfeld D., Arrazola P. J., Franke V., Leitz L., and Min S., Burrs-Analysis, control and removal, CIRP Annals - Manufacturing Technology, Vol. 58, No. 2, pp. 519‐542, 2009.