مقایسه تجربی و عددی معادلات ساختاری در رفتار فلز مس در نرخ کرنش متوسط با استفاده از فرایند کشش سیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک گرایش ساخت و تولید، دانشگاه تبریز، تبریز، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

این مقاله به بررسی میزان صحت پیش بینی رفتار مواد با استفاده از دو معادله ساختاری جانسون- کوک و زرلی- آرمسترانگ در فرایند کشش سیم مسی پرداخته است. نیروهای کشش در فرایند کشش سیم در شرایط مختلفی از سرعت کشش و درصد کاهش توسط نیروسنج متصل به دستگاه کشش سیم اندازه گیری شدند. شبیه سازی المان محدود فرایند کشش سیم مطابق با شرایط تجربی با استفاده از معادلات جانسون- کوک و زرلی- آرمسترانگ انجام شد. کد معادلات ساختاری مذکور در زبان فورترن در قالب زیر برنامه VUHARD نوشته شده و در مسیر حل نرم افزار قرار داده شد. از نیروی کشش سیم اندازه گیری شده در آزمایش‌های تجربی به عنوان معیاری برای صحت سنجی نتایج حاصل از شبیه‌سازی استفاده شده است. با مقایسه نیروها مشاهده گردید که نتایج حاصل از معادله زرلی- آرمسترانگ نسبت به معادله جانسون- کوک نتایج نزدیک‌تری به نتایج تجربی دارد و در برخی موارد نیروهای کشش به دست آمده از شبیه‌سازی دقیقا منطبق بر نتایج تجربی هستند و این نشان دهنده دقت بالای مدل شبیه سازی ارائه شده و معادلات به کار گرفته شده است.

کلیدواژه‌ها

موضوعات


[1]  Wright R. N., Wire Technology: Process engineering and metallurgy. ELSEVIER Inc, 2001.
[2]  Johnson G.R., W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th int. Symposium on Ballistic, Hague, pp. 541-547, 1983.
[3]  Vural M., Caro J., Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy, Materials Science and Engineering A, vol. 5, No. 20, pp. 56–65, 2009.
[4]  Chen G., Ren Ch., Ke Z., Li J., Yang X., Modeling of flow behavior for 7050 T7451 aluminum alloy considering microstructural evolution over a wide range of strain rates, Mechanics of Materials, Vol. 95, pp. 146–157, 2016.
[5]  Y.C. Lin, X. Chen, G. Liu, A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Materials Science and Engineering A, Vol. 527, pp. 6980–6986, 2010.
[6]  Tan J. Q., Zhan M., Liu Sh., Huang T., Guo J., Yang H., A modified Johnson-cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at High strain rates, Materials Science & Engineering A, Vol. 631, pp. 214-219, 2015.
[7]  Khan A. S., Suh Y. S., Kazmi R., Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plastics, Vol.  20, No. 22, pp. 33-48, 2004.
[8]  Khan A. S., Huang S.. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-10-4. International Journal of Plasticity, Vol. 8, pp. 397–424, 1992.
[9]  Liang R., Khan A. S., A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
[10]             Khan A. S., Zhang H. Y., Takacs L.,Mechanical response and modeling of fully compacted nano crystalline iron and copper. International Journal of Plasticity, Vol. 16, No.14, pp. 59–76, 2000.
[11]             Armstrong R., Zerilli F., Dislocation mechanics based analysis of material dynamics behavior. Journal de Physique Colloquies, Vol. 49, pp.529-534, 1988.
[12]             Klepaczko J. R., Rusinek A., Rodríguez-Martínez J. A., cherski P. e., Arias A., Modelling of thermo-viscoplastic behavior of DH-36 and Weldox 460-E structural steels at wide ranges of strain rates and temperatures, comparison of constitutive relations for impact problems. Mechanics of Materials, Vol. 41, pp. 599-621, 2009.
[13]             Nemat-Nasser S., Li Y., Flow stress of FCC polycrystals with application to OFHC Cu. Acta Material, Vol. 46, No. 2, pp. 65-77, 1998.
[14]             Voyiadjis G. ZAbed., F. H., Microstructural based models for bcc and fcc metals with temperature and strain rate dependency. Mechanics of Materials, Vol. 37, No. 3, pp. 55-78, 2005.
[15]             Hong-Ying L., Yang-Hua L., Wang X., Jiao-Jiao L., Wu Y., A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel. Materials and Design, Vol.  49, pp. 493–501, 2013.
[16]             Tanimura S., Tsuda T., Abec A., Hayashi H., Jones N., Comparison of rate-dependent constitutive models with experimental data. International Journal of Impact Engineering, Vol. 69, pp. 104-113, 2014.
[17]             Bonora N., Testa G., Ruggiero A., Iannitti G., Mortazavi N,. Numerical Simulation of Dynamic Tensile Extrusion Test of OFHC Copper. Dynamic behavior of material, Vol. 1, No. 2, pp. 136-152, 2015.
[18]             An He, Ganlin Xie, Hailong Zhang, Xitao Wang. A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Materials and Design, Vol 52, pp. 677–685, 2013.
[19]             Zejian Xu, Fenglei Huang. Comparison of constitutive models for FCC metals over wide temperature and strain rate ranges with application to pure copper. International Journal of Impact Engineering, Vol. 79, pp.65-74, 2015.
[20]             Preston D.L., Tonks D.L., Wallace D. C.. Model of plastic deformation for extreme loading conditions. Applied Physics, Vol. 93, pp. 211, 2003.
[21]             ASM Metals Handbook- Mechanical Testing and Evaluation, ASME International 2000.
[22]             Armstrong R., Zerilli F., Dislocation mechanics based constitutive relations for material dynamics calculations. Journal of Applied Physics, Vol. 61, pp.529-534, 1987.
[23]             evans W., avitzur B., Measurement of Friction in Drawing, Extrusion, and Rolling, Transections of the ASME, January, pp 72-80, 1968.
[24]             Avitzur B., Analysis of Wire Drawing and Extrusion, Through Conical Dies of Large Cone Angle, Journal of Engineering for Industry, Vol. 85, No. 1, pp. 89-95, 1963.
[25]             G. Vega, A. Haddi, A. Imad. Investigation of process parameters effect on the copper-wire drawing. Materials and Design, Vol. 30, pp. 3308-3312, 2009.
[26]             Domiaty A. E., Kassab S. Z., Temperature rise in wire-drawing, Journal of Materials Processing Technology, Vol.  83, pp. 72–83, 1998.
[27]             ABAQUS User Subroutines Reference Manual, Explicit Subroutine, VUHARD. Version 6.10.
[28]             http://www.matweb.com