بررسی عددی عایق‌های چندلایه گرمایی با جداکننده‌های‌ نانو الیاف کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مکانیک تبدیل انرژی- دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 دانشیار، گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در تحقیق حاضر مطالعه عددی عایق­های چند لایه گرمایی با استفاده از مواد الیافی انجام شده است. نانو الیاف­ها با توجه به نسبت سطح به حجم بالا و در نتیجه خصوصیات تابشی ویژه بعنوان ماده جداکننده عایق­های چند لایه گرمایی معرفی گردیده و عملکرد آن مورد بررسی قرار گرفته است. انتقال گرمای تابشی الیاف‌ها با فرض عایق ضخامت نوری ضخیم و استفاده از تقریب پخشی برای الیاف معمولی آلومینا و نانوالیاف کربن محاسبه شده است. برای مدل کردن رسانایی گرمایی مؤثر الیاف­ها، پارامترهای مورد نیاز با استفاده از داده­های آزمایشگاهی برای الیاف معمولی آلومینا و نانوالیاف کربن تعیین گردیده است.  در نتایج به دست آمده، ضریب استهلاک نوری نانوالیاف کربن در دمای متوسط 500 کلوین حدود 31 درصد نسبت به الیاف معمولی آلومینا بیشتر می­باشد. نتایج نشان می­دهند که استفاده از نانوالیاف کربن به عنوان جداکننده­ی عایق چند لایه باعث بهبود عملکرد عایق می­شود. با توجه به این افزایش عملکرد، استفاده ازنانوالیاف بعنوان جداکننده پیشنهاد می­گردد.

کلیدواژه‌ها

موضوعات


[1]     Cornell W.D.,Radiation Shield supports in Vacuum Insulated Containers, U.S. Patent No. 2,643,022,1947.
[2]     Peterson,P.,Swedish Technical Research Council Report No.706,Sartryck Ur TVF,29,4.P.51.1958.
[3]     Mil'man S.B. and Kaganer M.G., Heat transfer  by combined radiation and  conduction  in cryogenic vacuum-multilayer  thermal  insulation,Scientific-Industrial Union "Geli~mssh," Moscowl, Translated  from Inzhenerno-Fizicheskfi Zhurna, Vol.46, No.5, pp.754-760, May,1984.
[4]     Keller K.,Hoffmann­­­­ M.,Zorner W.,Blumenberg J. Application of high temperature multilayer insulations, Journal of Acta Astronautica,Vol.26, No.6, pp.451-258, 1992.
[5]     Daryabeigi K., Miller S. D., Cunnington G.R., Heat transfer in high-temperature multilayer insulation, Cryogenics, Vol 45, pp. 221-229, 2000.
[6]     Gu L., Generalized equation for thermal conductivity of MLI at temperatures from 20k to 300k,2003 ASME International­ Mechanical Engineering Congress,Washington,D.C.,November 15-21,2003
[7]     Gibson P.W., Lee C., Ko F., Reneker D., Application of Nanofiber Technology to Nonwoven Thermal Insulation, Journal of Engineered Fibers and Fabrics, Volume 2, Issue 2, 2007.
[8]     Demko M.T., Dai Z., Yan H., King W.P., Cakmak M. and Abramson A.R., Application of the thermal flash technique for low thermal diffusivity micro/nanofibers, Review of Scientific Instruments, 2009.
[9]     Shen S., Henry A., Tong J., Zheng R., Chen G., Polyethylene nanofibres with very high thermal conductivities, Nature Nanotechnology,Vol. 5, pp. 251-255, 2010, DOI: 10.1038/NNANO.2010.27
[10]  Sabetzadeh N., Bahrambeygi H., Rabbi A., Nasouri K., Thermal conductivity of polyacrylonitrile nanofibre web in various nanofibre diameters and surface densities, Micro & Nano Letters, Vol. 7, Iss. 7, pp. 662-666, 2012.
[11]  Daryabeigi, K., Heat Transfer in High-Temperature Fibrous Insulation, Journal of Thermophysics and Heat Transfer, Vol. 17, No. 1, pp. 10-20, 2003.
[12]  Daryabeigi K., Cunnington G.R., Knutson J.R., Measurement of Heat Transfer in Unbonded Silica Fibrous Insulation and Comparison with Theory, 29th International Thermal Conductivity Conference (ITCC), Birmingham, United States , 24-27 Jun, 2007.
[13]  Gebhart B., Heat Conduction and Mass Diffusion, McGraw-Hill, New York, pp. 442- 444, 1993.
[14]  Glassman I. and Harr B.I., collision diameters of some gases as functions of Temperature, The journal of physical chemistry, vol.56, pp.797-799, 1952.
[15]  Incropera, Dewitt, Bergman, Lavine, Fundamentals of Heat and Mass Transfer, sixth edition, Wiley, 2006.
[16]  Modest M. F., Radiative Heat Transfer, Mc Graw-Hill, 1993.
[17]  Sparrow E.M., Cess R.D., Radiation Heat Transfer, Augmented Edition. McGraw- Hill, 1978.
[18]  Tong T.W, Tien C.L., Analytical models for thermal radiation in fibrous insulations, The Second International Conference on Thermal Insulation, Millbrae, California, May 27 to 29, 1980.
[19]  Verschoor J. D.  and Greebler P., Heat Transfer by Gas Conduction and Radiation in Fibrous Insulations, Trans., Am. Soc. Mech. Engrs., Vol. 74, pp 961-968, 1952.
[20]  Bankvall C. G., Heat Transfer in Fibrous Materials, J. Test. Eval., Vol. 1,pp.235-243, 1973.
[21]  Van der Held E. F. M., The Contribution of Radiation to the Conduction of Heat, II. Boundary Conditions, Appl. Sci. Res., Section A, Vol. 4, pp. 99-77, 1953.
[22]  Hager N. E., Steere Jr. and R. C., Radiant Heat Transfer in Fibrous Thermal Insulation, J. Appl. Phys., Vol. 38, pp. 4663-4668, 1967.
[23]  Corruccini R. j, Gaseous  heat  conduction  at low  pressures  and  temperatores, Journal of  Vacuum, Vol 7-8, April, 1959.