مطالعه تخریب پیش رونده در کامپوزیت الیاف خردشده شیشه/اپوکسی تحت بارگذاری کششی ساده و ارزیابی مدل چو و وانگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه خوارزمی، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه خوارزمی، تهران، ایران

چکیده

کامپوزیت های الیاف خرد شده، به خاطر سادگی فرایندهای تولید و داشتن خواص مکانیکی یکنواخت، در برخی از کاربردهای صنعتی مورد توجه قرار گرفته اند. موضوع این مقاله، بررسی تخریب پیش رونده در کامپوزیت الیاف خرد شده تصادفی شیشه نوع E/اپوکسی و ارزیابی مدل چو و وانگ در آزمایش کشش ساده است. در بخش تجربی، روش همبستگی تصاویر دیجیتال به کار رفته و منحنی تغییرات مدول یانگ و ضریب پواسون در آزمایش کشش ساده تا انهدام کامل نمونه استخراج شده است. در بخش نظری، به منظور بررسی تخریب به صورت غیرآیزوتروپیک و ایجاد تمایز بین مکانیزم تخریب ناشی از تنش کششی و فشاری، قسمت اول معیار چو و وانگ به کار رفته است. افزایش متغیرهای تخریب در خلال گسترش خرابی به دست آمده و رشد تخریب غیرآیزوتروپیک در این ماده کامپوزیتی استنتاج شده است. با انجام تخمین خطی در محاسبه ضریب وابستگی به تخریب، صحت مدل مورد استفاده برای پیش بینی رفتار مکانیکی کامپوزیت تخریب شده، از طریق مقایسه با نتایج تجربی مورد تأیید قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1]  Agarwal B. D. and Broutman L. J., Analysis and Performance of Fiber Composites. John Wiley & Sons, New York, 1999.
[2]  Dano M. L., Gendron G. and Mir H., Mechanics of Damage and Degradation in Random Short Glass Fiber Reinforced Composites. Journal of Thermoplastic Composite Materials, Vol. 15, pp. 169–177, 2002.
[3]  Ramakrishnan M. U. and Mallick P. K., Strength and Failure Characteristics of a Glass Fiber SMC-R Composite under Combined Tensile and Shear Stresses. Composites Part B, Vol. 176, 2019.
[4]  Lees K. J., A Study of the Tensile Modulus of Short Fiber Reinforced Plastics. Journal of Polymer Engineering & Science, Vol. 8, pp. 186-194, 1968.
[5]  Tsai S. W. and Pagano J. J., Composite Materials Workshop. Technomic Stamford, Conn, pp. 233-252, 1968.
[6]  Christensen R. M. and Waals F. M., Effective Stiffness of Randomly Oriented Fiber Composites. Journal of Composite Materials, Vol. 6, pp. 518-532, 1972.
[7]  Manera M., Elastic Properties of Randomly Oriented Short Fiber-Glass Composites. Journal of Composite Materials, Vol. 11, pp. 235-247, 1977.
[8]  Pan N., The Elastic Constants of Randomly Oriented Fiber Composite: A New Approach to Prediction. Science and Engineering of Composite Materials, Vol. 5, pp. 63-72, 1996.
[9]  Pan Y., Iorga L. and Pelegri A. A., Numerical Generation of a Random Chopped Fiber Composite RVE and Its Elastic Properties. Composites Science and Technology, Vol. 68, pp. 2792-2798, 2008.
[10]             Chen Z., et al., Multiscale Finite Element Modeling of Sheet Molding Compound (SMC) Composite Structure based on Stochastic Mesostructure Reconstruction. Composite Structures, Vol. 188, pp. 25-38, 2017.
[11]             Feraboli P., Cleveland T., Stickler P. and Halpin J., Stochastic Laminate Analogy for Simulating the Variability in Modulus of Discontinuous Composite Materials. Composites: Part A, Vol. 41, pp. 557-570, 2010.
[12]             Chen P. E., Strength Properties of Discontinuous Fiber Composites. Polymer Engineering & Science, Vol. 11, pp. 51–56, 1971.
[13]             Baxter W. J., The Strength of Metal Matrix Composites Reinforced with Randomly Oriented Discontinuous Fibers. Metallurgical Transactions A, Vol. 23, pp. 3045–3053, 1992.
[14]             Hahn H. T., On Approximations for Strength of Random Fiber Composites. Journal of Composite Materials, Vol. 9, pp. 226-232, 1975.
[15]             Halpin J. C. and Kardos J. L., Strength of Discontinuous Reinforced Composites: I. Fiber Reinforced Composites. Polymer Engineering & Science, Vol. 18, pp. 496–504, 1978.
[16]             Shokrieh M. M. and Moshrefzadeh-Sani H., A Novel Laminate Analogy to Calculate the Strength of Two-Dimensional Randomly Oriented Short-fiber Composites. Composites Science and Technology, Vol. 147, pp. 22-29, 2017.
[17]             Meraghni F. and Benzeggagh M. L., Micromechanical Modeling of Matrix Degradation in Randomly Oriented Discontinuous-Fiber Composites. Composites Science and Technology, Vol. 55, pp. 171-186, 1995.
[18]             Desrumaux F., Meraghni F. and Benzeggagh M. L., Generalised Mori-Tanaka Scheme to Model Anisotropic Damage Using Numerical Eshelby Tensor. Journal of Composite Materials, Vol. 35, pp. 603-624, 2001.
[19]             Yang Y., Pan Y. and Pelegri A. A., Multiscale Modeling of Matrix Cracking Coupled with Interfacial Debonding in Random Glass Fiber Composites Based on Volume Elements. Journal of Composite Materials, Vol. 47, pp. 3389-3399, 2012.
[20]             Schemmann M., et al., Anisotropic Meanfield Modeling of Debonding and Matrix Damage in SMC Composites. Composites Science and Technology, Vol. 161, pp. 143-158, 2018.
[21]             Morozov V. E., Damage Evolution in The Short Fiber Reinforced Composite Structures. 16th International Conference on Composite Materials, Kyoto, Japan, 2007.
[22]             Hicham M., Fafard M., Bissonnette B. and Dano L. M., Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect. Journal of Applied Mechanics, Vol. 10, pp. 249-258, 2005.
[23]             Dano, M. L., Gendron G., Maillette F. and Bissonnette B., Experimental Characterization of Damage in Random Short Glass Fiber Reinforced Composites. Journal of Thermoplastic Composite Materials, Vol.19, pp. 79-95, 2006.
[24]             Serna Moreno M. C. and Lopez Cela J. J., Failure Envelope under Biaxial Tensile Loading for Chopped Glass-Reinforced Polyester Composites. Composites Science and Technology, Vol. 72, pp. 91-96, 2011.
[25]             Serna Mareno M. C., Martinez Vicente J. L. and Lopez Cela J. J., Failure Strain and Stress Fields of a Chopped Glass-Reinforced Polyester under Biaxial Loading. Composite Structures, Vol. 103, pp. 27–33, 2013.
[26]             Serna Mareno M. C. and Martinez Vicente J. L., In-Plane Shear Failure Properties of a Chopped Glass-Reinforced Polyester By Means of Traction–Compression Biaxial Testing. Composite Structures, Vol. 122, pp. 440–444, 2015.
[27]             Mori T. and Tanaka K., Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metallurgica, Vol. 21, pp. 571-574, 1973.
[28]             Challamel N., Lanos C. and Casandjian, C., Discussion: “Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect”. Journal of Applied Mechanics, Vol. 73, pp. 347-348, 2006.
[29]             Chen X. F. and Chow, C. L., On Damage Strain Energy Release Rate Y. International Journal of Damage Mechanics, Vol. 4, pp. 251-263, 1995.
[30]             Challamel N., Lanos C. and Casandjian C., Strain-Based Anisotropic Damage Modelling and Unilateral Effects. International Journal of Mechanical Sciences, Vol. 47, pp. 459-473, 2005.
[31]             Desmorat R., Anisotropic Damage Modeling of Concrete Materials. International Journal of Damage Mechanics, Vol. 25, pp. 818-852, 2015.
[32]             Zhang L. and Yu. W., Constitutive Modeling of Damageable Brittle and Quasi-Brittle Materials. International Journal of Solids and Structures, Vol. 117, pp. 80-90, 2017.
[33]             Gao Z., Zhang L. and Yu W., A Nonlocal Continuum Damage Model for Brittle Fracture. Engineering Fracture Mechanics, Vol. 189, pp. 481-500, 2017.
[34]             Chow C. L. and Wang J., An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture. Engineering Fracture Mechanics, Vol. 27, pp. 547-558, 1987.
[35]             Chow C. L. and Yang F., Inelastic Finite Element Analysis of Fiber-Reinforced Composite Laminates with Damage. Proc Instn Mech Engrs, Vol. 212, pp. 717-729, 1998.
[36]             Rabotnov Y. N., Creep Problems in Structural Members. North Holland, Amsterdam, 1969.
[37]             Sidoroff F., Description of Anisotropic Damage Application to Elasticity. IUTAM Colloquium, Physical Non-Linearities in Structural Analysis, Symposium Senlis, France, pp. 237-244, 1981.
[38]             Voyiadjis G. Z., Yousef M. A. and Kattan P. I., New Tensors for Anisotropic Damage in Continuum Damage Mechanics. Journal of Engineering Materials and Technology, Vol. 134, 2012
[39]             Jaric J., Kuzmanovic D. and Sumarac D., On Anisotropic Elasticity Damage Mechanics. International Journal of Damage Mechanics, Vol. 22, pp. 1023-1038, 2013.
[40]             Cordebois J. P. and Sidoroff F., Damage Induced Elastic Anisotropy. Mechanical Behavior of Anisotropic Solids, pp. 761-774, 1982.
[41]             Chow C. L. and Wang J., An Anisotropic Theory of Elasticity for Continuum Damage Mechanics. International Journal of Fracture, Vol. 33, pp. 3-16, 1987.
[42]             Chaboche J. L., Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage. International Journal of Damage Mechanics, Vol. 2, pp. 311-329, 1993.
[43]             Wang J. and Chow C. L., A Non‐Proportional Loading Finite Element Analysis of Continuum Damage Mechanics for Ductile Fracture. International Journal for Numerical Methods in Engineering, Vol. 29, pp. 197-209, 1990.
[44]             ASTM D3039/D3039M-14: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, 2004.
[45]             ASTM E111-04: Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus, ASTM International, 2004.