شبیه سازی محاسباتی تحریک مکانیکی سلول‌های بنیادی مزانشیمی تحت نیروی کشش چرخه‌ای تک‌محوره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، بخش مهندسی پزشکی، گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 کارشناسی ارشد، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

3 دانشیار، بانک سلولی ایران، انستیتو پاستور ایران

چکیده

در پاسخ به نیروهای خارجی، سلول‌های چسبیده به سطح از حالت آرایش تصادفی به حالت منظم و یکنواخت بسته به کشش اعمالی، بازآرایی می‌شوند. در سطح زیر سلولی، اسکلت سلولی و همچنین رشته‌های تنشی با قطبی شدن، نیروهای داخلی انقباضی ایجاد می‌کنند که موجب بازآرایی سلول‌ها در زاویه‌ای مشخص می‌شوند. در پژوهش حاضر، به بررسی محاسباتی پاسخ تک سلول به کشش چرخه‌ای زیرلایه پرداخته شده است. نوآوری پژوهش، شبیه‌سازی تغییرات مورفولوژی سلول بنیادی با استفاده از مدل ویسکوالاستیک است. به این منظور، تک سلول با توجه به ابعاد سلول‌های بنیادی مزانشیمی در نرم‌افزار comsol طراحی گردید. کرنش چرخه‌ای تک محوره به زیرلایه اعمال شد و فرکانس‌ اعمال این کرنش به عنوان پارامتری متغیر بررسی شد. زاویه‌ی خوابیدگی سلول روی بستر از 34 تا 90 درجه تغییر داده شد. مدول الاستیک بستر و تغییرات کرنش اعمالی نیز در مقادیر مختلف بررسی شد. نتایج به‌دست آمده حاکی از وابستگی شدید توزیع تنش روی سطح سلول و هسته به زاویه‌ی خوابیدگی است و نشان داد که سلول در زاویه‌ی تقریبی 70 درجه نسبت به راستای بارگذاری کمترین تنش و کرنش را دارا می‌باشد.

کلیدواژه‌ها

موضوعات


[1]          Fletcher D. A., and Mullins R. D., Cell mechanics and the cytoskeleton. Nature, Vol. 463, no. 7280, pp. 485-492, 2010.
[2]          Murphy W. L., McDevitt T. C., and Engler A. J., Materials as stem cell regulators. Nat. Mater., Vol. 13, No. 6, pp. 547-557, 2014.
[3]          Karcher H., Lammerding J., Huang H., Lee R. T., Kamm R. D.,  and Kaazempur-Mofrad M. R., A Three-Dimensional Viscoelastic Model for Cell Deformation with Experimental Verification. Biophys. J., Vol. 85, No. 5, pp. 3336-3349, 2003.
[4]          Aggarwal S., Moggio A., and Bussolati B., Concise Review: Stem/Progenitor Cells for Renal Tissue Repair: Current Knowledge and Perspectives. Stem Cells Transl. Med., Vol. 2, No. 12, pp. 1011-1019, 2013.
[5]          Li D., Zhou J., Chowdhury F., Cheng J., Wang N., and Wang F., Role of mechanical factors in fate decisions of stem cells. Regen. Med., Vol. 6, No. 2, pp. 229-240, 2011.
[6]          Jean R. P., Chen C. S., and Spector A. A., Finite-Element Analysis of the Adhesion-Cytoskeleton-Nucleus Mechanotransduction Pathway During Endothelial Cell Rounding: Axisymmetric Model. J. Biomech. Eng., Vol. 127, No. 4, p. 594, 2005.
[7]          Safshekan F., Tafazzoli-Shadpour M., Shokrgozar M. A., Haghighipour N., and Alavi S. H., Effects of Short-Term Cyclic Hydrostatic Pressure on Initiating and Enhancing the Expression of Chondrogenic Genes in Human Adipose-Derived Mesenchymal Stem Cells. J. Mech. Med. Biol., Vol. 14, No. 04, p. 1450054, 2014.
[8]          Shoajei S., Tafazzoli-Shahdpour M., Shokrgozar M. A., and Haghighipour N., Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments. Cell Biol. Int., Vol. 38, No. 5, pp. 577-581, 2014.
[9]          Shojaei S., Tafazzoli-Shahdpour M., Shokrgozar M. A., and Haghighipour N., Comparative analysis of effects of cyclic uniaxial and equiaxial stretches on gene expression of human umbilical vein endothelial cells. Cell Biol. Int., Vol. 39, No. 6, pp. 741-749, 2015.
[10]        Haghighipour N., Heidarian S., Shokrgozar M. A., and Amirizadeh N., Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell Biol. Int., Vol. 36, No. 7, pp. 669-675, 2012.
[11]        Haghighipour N., Tafazzoli-Shadpour M., Shokrgozar M. A., and Amini S., Effects of Cyclic Stretch Waveform on Endothelial Cell Morphology Using Fractal Analysis. Artif. Organs, Vol. 34, No. 6, pp. 481-490, 2010.
[12]        Bayati V., Sadeghi Y., Shokrgozar M. A., Haghighipour N., Azadmanesh K., Amanzadeh A., Azari S., The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell, Vol. 43, No. 6, pp. 359-366, 2011.
[13]        Safshekan F., Tafazzoli-Shadpour M., Shokrgozar M. A., Haghighipour N., Mahdian R., and Hemmati A., Intermittent Hydrostatic Pressure Enhances Growth Factor-Induced Chondroinduction of Human Adipose-Derived Mesenchymal Stem Cells. Artif. Organs, Vol. 36, No. 12, pp. 1065-1071, 2012.
[14]        Hu D. D., Lin E. C. K., Kovach N. L., Hoyer J. R., and Smith J. W., A Biochemical Characterization of the Binding of Osteopontin to Integrins α v β 1 and α v β 5. J. Biol. Chem., Vol. 270, No. 44, pp. 26232-26238, 1995.
[15]        Peake M., Cooling L. M., Magnay J., and Thomas P. B. M., Regulatory pathways inVolved in mechanical induction of c-fos gene expression in bone cells.  J Appl Physiol., Vol. 89, No. 6, pp. 2498-2507, 2001.
[16]        Maniotis A. J., Chen C. S., and Ingber D. E., Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci., Vol. 94, No. 3, pp. 849-854, 1997.
[17]        Zhang B., Luo Q., Chen Z., Sun J., Xu B., Ju Y., Song G., Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res., Vol. 14, No. 2, pp. 155-164, 2015.
[18]        Lee J., Abdeen A. A., Tang X., Saif T. A., and Kilian K. A., Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials, Vol. 69, pp. 174-183, 2015.
[19]        Wang J. H.-C., and Thampatty B. P., An Introductory Review of Cell Mechanobiology. Biomech. Model. Mechanobiol., Vol. 5, No. 1, pp. 1-16, 2006.
[20]        Coppolino M. G., and Dedhar S., Bi-directional signal transduction by integrin receptors. Int. J. Biochem. Cell Biol., Vol. 32, No. 2, pp. 171-188, 2000.
[21]        Iqbal J., and Zaidi M., Molecular regulation of mechanotransduction. Biochem. Biophys. Res. Commun., Vol. 328, No. 3, pp. 751-755, 2005.
[22]        Sears C., and Kaunas R., The many ways adherent cells respond to applied stretch. J. Biomech., Vol. 49, No. 8, pp. 1347-1354, 2016.
[23]        Goldyn A. M., Kaiser P., Spatz J. P., Ballestrem C., and Kemkemer R., The kinetics of force-induced cell reorganization depend on microtubules and actin. Cytoskeleton, Vol. 67, No. 4, p. NA-NA, 2010.
[24]        Goldyn A. M., Rioja B. A., Spatz J. P., Ballestrem C., and Kemkemer R., Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J. Cell Sci., Vol. 122, No. 20, 2009.
[25]        Chen B., Kemkemer R., Deibler M., Spatz J., and Gao H., Cyclic Stretch Induces Cell Reorientation on Substrates by Destabilizing Catch Bonds in Focal Adhesions. PLoS One, Vol. 7, No. 11, p. e48346, 2012.
[26]        Chen B., Chen X., and Gao H., Dynamics of Cellular Reorientation on a Substrate under Biaxial Cyclic Stretches. Nano Lett., Vol. 15, No. 8, pp. 5525-5529, 2015.
[27]        Pirentis A. P., Peruski E., Iordan A. L., and Stamenović D., A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching. Cell. Mol. Bioeng., Vol. 4, No. 1, pp. 67-80, 2011.
[28]        Wada H., Biomechanics at Micro- and Nanoscale Levels. WORLD SCIENTIFIC, 2006.
[29]        Engler A. J., Sen S., Sweeney H. L., and Discher D. E., Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, Vol. 126, No. 4, pp. 677-689, 2006.
[30]        Rahimpour E., Vahidi B., and Mollahoseini Z., A computational simulation of cyclic stretch of an individual stem cell using a nonlinear model. J. Tissue Eng. Regen. Med., Vol. 13, No. 2, pp. 274-282, 2019.
[31]        Kilian K. A., Bugarija B., Lahn B. T., and Mrksich M., Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. U. S. A., Vol. 107, No. 11, pp. 4872-4877, 2010.
[32]        Cirka H. A., Kural M. H., and Billiar K. L., Mechanoregulation of aortic valvular interstitial cell life and death. J. Long. Term. Eff. Med. Implants, Vol. 25, No. 1-2, pp. 3-16, 2015.
[33]        Khayat G., Rosenzweig D. H., and Quinn T. M., Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation, Vol. 83, No. 4, pp. 179-184, 2012.
[34]        Kim K. M., et al., Shear Stress Induced by an Interstitial Level of Slow Flow Increases the Osteogenic Differentiation of Mesenchymal Stem Cells through TAZ Activation. PLoS One, Vol. 9, No. 3, p. e92427, 2014.
[35]        Kang M.-N., Yoon H.-H., Seo Y.-K., and Park J.-K., Effect of Mechanical Stimulation on the Differentiation of Cord Stem Cells. Connect. Tissue Res., Vol. 53, No. 2, pp. 149-159, 2012.
[36]        Hamilton D. W., Maul T. M., and Vorp D. A., Characterization of the Response of Bone Marrow-Derived Progenitor Cells to Cyclic Strain: Implications for Vascular Tissue-Engineering Applications. Tissue Eng., Vol. 10, No. 3-4, pp. 361-369, 2004.
[37]        Yuan L., Luo Q., Yang L., and Song G.-B., Role of FAK-ERK1/2 signaling pathway in proliferation of rat bone-marrow mesenchymal stem cells stimulated by cyclic stretching. J. Med. Biol. Eng., Vol. 33, No. 2, p. 229, 2013.
[38]        Kurpinski K., Park J., Thakar R. G., and Li S., Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol. Cell. Biomech., Vol. 3, No. 1, pp. 21-34, 2006.
[39]        Shimizu N., et al., Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor β. J. Appl. Physiol., Vol. 104, No. 3, pp. 766-772, 2008.
[40]        Lin Y. C., Koenderink G.H., and MacKintosh F.C., and Weitz D. A., Viscoelastic Properties of Microtubule Networks. Macromolecules, Vol. 40, No. 21, pp. 7714-7720,2007.
[41]        Kumar S., et al., Viscoelastic Retraction of Single Living Stress Fibers and Its Impact on Cell Shape, Cytoskeletal Organization, and Extracellular Matrix Mechanics. Biophys. J., Vol. 90, No. 10, pp. 3762-3773, 2006.
[42]        Chen B., Ji B., and Gao H., Modeling active mechanosensing in cell-matrix interactions. Annu. Rev. Biophys., Vol. 44, pp. 1-32, 2015.
[43]        Johnston I. D., McCluskey D. K., Tan C. K. L., and Tracey M. C., Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromechanics Microengineering, Vol. 24, No. 3, p. 035017, 2014.
[44]        Park T. H., and Shuler M. L., Integration of Cell Culture and Microfabrication Technology. Biotechnol. Prog., Vol. 19, No. 2, pp. 243-253, 2003.
[45]        Choi J.,  Lee E. K., Choo J., Yuh J., and Hong J. W., Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol. J., Vol. 10, No. 11, pp. 1682-1688, 2015.
[46]        Vega S. L., Kwon M., Mauck R. L., and Burdick J. A., Single Cell Imaging to Probe Mesenchymal Stem Cell N-Cadherin Mediated Signaling within Hydrogels. Ann. Biomed. Eng., Vol. 44, No. 6, pp. 1921-1930, 2016.
[47]        Ge J., Guo L., Wang S., Zhang Y., Cai T., Zhao R. C., and Wu Y., The Size of Mesenchymal Stem Cells is a Significant Cause of Vascular Obstructions and Stroke. Stem Cell Rev Rep., Vol. 10, No. 2, pp. 295-303, 2014.
[48]        Rashidi N., Tafazzoli-Shadpour M., Haghighipour N., and Khani M. M., Morphology and contractile gene expression of adipose-derived mesenchymal stem cells in response to short-term cyclic uniaxial strain and TGF-β1. Biomed. Eng. / Biomed. Tech., Vol. 63, No. 3, pp. 317-326, 2018.
[49]        Comsol AB., Comsol Multiphysics Reference Manual. Version, 2007.
[50]        Takemasa T., Sugimoto K, and Yamashita K., Amplitude-Dependent Stress Fiber Reorientation in Early Response to Cyclic Strain. Exp. Cell Res., Vol. 230, No. 2, pp. 407-410, 1997.
[51]        Yamada H., Takemasa T. and Yamaguchi T., Theoretical study of intracellular stress fiber orientation under cyclic deformation. J. Biomech., Vol. 33, No. 11, pp. 1501-1505, 2000.
[52]        رشیدی ن.، ارزیابی تاثیر پارامترهای مکانیکی بر تمایز، مورفولوژی و ساختار اسکلتی سلولهای بنیادی در مسیر تمایز به سلول عضله صاف با استفاده از روش های تجربی. پایان نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، 1394.
[53]        Jagodzinski M., Drescher M., Zeichen J., Hankemeier S., Krettek C., Bosch U., van Griensven M., Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur. Cell. Mater., Vol. 7, pp. 35-41, 2004.
[54]        Neidlinger-Wilke C., Grood E. S., Wang, R. A., Brand J. H.-C., and Claes L., Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res., Vol. 19, No. 2, pp. 286-293, 2001.
[55]        Mullen C. A., Vaughan T. J., Voisin M. C., Brennan M. A., Layrolle P., and McNamara L. M., Cell morphology and focal adhesion location alters internal cell stress. J. R. Soc. Interface, Vol. 11, No. 101, 2014.
[56]        Chen Y.-J., Huang C.-H., Lee I.-C., Lee Y.-T., Chen M.-H., and Young T.-H., Effects of Cyclic Mechanical Stretching on the mRNA Expression of Tendon/Ligament-Related and Osteoblast-Specific Genes in Human Mesenchymal Stem Cells. Connect. Tissue Res., Vol. 49, No. 1, pp. 7-14, 2008.