بررسی اثر ترکیب فیبرهای آب‌دوست و آب‌گریز در لایه انتشار گاز پیل سوختی غشای مبادله پروتون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شاهرود

2 هیات علمی

چکیده

در این مطالعه، از روش شبکه بولتزمن جهت بررسی انتقال آب مایع در لایه انتشار گاز (GDL) و کانال گاز (GC) قسمت کاتد پیل سوختی غشای مبادله پروتون استفاده شده است. هدف از این مطالعه، بررسی رفتار خوشه­های آب مایع به ‌صورت میکروسکوپی از مرز مشترک کاتالیست-لایه انتشار گاز تا کانال گاز است. همچنین رفتار دینامیکی آب مایع در مدت زمان حذف از لایه انتشار گاز الکترود کاتد پیل سوختی غشای مبادله پروتون شبیه­سازی شده و اثرات ترکیب زاویه خیسی سطح بر روی توزیع رفتار دینامیکی و اشباع آب مایع در دو حالت پایا و غیرپایا بررسی شده است. نتایج نشان می­دهد که پیل سوختی زمانی بهترین عملکرد را دارد که فیبرهای آب­دوست نزدیک مرز مشترک لایه انتشار گاز- کانال گاز قرار گیرند.

کلیدواژه‌ها


[1]  Molaeimanesh G. and Akbari M.H., Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method. Korean J. Chem. Eng, 31(4), PP. 598-610, 2014.
[2]  O'Hayre R., Cha S.W., Colella W. and Prinz F.B., Fuel Cell Fundamentals. Second ed., John Wiley & Sons, 2009.
[3]  Wang C.Y., Fundamental models for fuel cell engineering. Chem. Rev, 104, PP. 4727-4766, 2004.
[4]  Larminie J. and Dicks A., Fuel Cell Systems Explained. John Wiley & Sons Ltd., New York, 2003.
[5]  Chen L., Luan H.B. and Tao W.Q., Liquid water dynamic behaviors in the GDL and GC of PEMFCS using lattice Boltzmann method. Frontiers in Heat and Mass Transfer (FHMT), 1, 023002, 2010.
[6]  Chen L., Luan H.B., He Y.L. and Tao W.Q., Numerical Investigation of Liquid Water Transport and Distribution in Porous Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell Using Lattice Boltzmann Method. Published in Russian in Elektrokhimiya, Vol. 48, No. 7, pp. 786–800, 2012.
[7]  Li H., Tang Y., Wang Z., Shi Z., Wu S., Song D., Zhang J., Fatih K., Zhang J., Wang H., Liu Z., Abouatallah R. and Mazza A., A review of water flooding issues in the proton exchange membrane fuel cell.  Journal of Power Sources, vol.178(1), PP. 103-117, 2008.
[8]  Lenormand R., Numerical Models and Experiments on Immiscible Displacements in Porous Media. Journal of Fluid Mechanics, vol. 189, pp. 165–118, 1988.
[9]  Mukherjee P.P., Wang C.Y. and Kang Q., Mesoscopic Modeling of Two Phase Behavior and Flooding Phenomena in Polymer Electrolyte Fuel Cells. ElectrochimicaActa, vol. 54, pp. 6861–6875, 2009.
[10]   Hao L. and Cheng P., Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 195, pp. 3870–3881, 2010.
[11]   Chen L., Luan H.B. and Tao W.Q., liquid water dynamic behaviors in the GDL and GC of PEMFCS using lattice Boltzmann method. Frontiers in Heat and Mass Transfer (FHMT), 1, 023002, 2010.
[12]   Hao L. and Cheng P., Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell. J. Power Sources 195, pp. 3870-3881, 2010.
[13]   Sinha P.K. and Wang C.Y., Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chemical Engineering Science 63, pp. 1081 – 1091, 2008.
[14]   Kim K.N., Kang J.H., Lee S.G., Nam J.H.and Kim
C.J.,Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells.Journal of Power Sources,vol. 278, pp. 703-717, 2015.
[15]             Jeon D.H., and Kim H., Effect of compression on water transport in gas diffusion layer of
polymer electrolyte membrane fuel cell using lattice Boltzmann method. Journal of Power Sources, vol. 294, pp. 393-405, 2015.
[16]   Jeon D.H. and Kim H., Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method. Journal of Power Sources, 294, pp. 393-405, 2015.
[17]   Zou Q. and He X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9, pp. 1591–1598, 1997.
[18]   Puneet K., Sinha P., Mukherjee P. and Wang C.Y., Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells. J. Mater. Chem, vol. 17, pp. 3089–3103, 2007.
[19]   Kuzmin A., Mohamad A.A. and Succi S., Multi-relaxation time lattice Boltzmann model for multiphase flows. International Journal of Modem Physics C, vol. 19(6), pp. 875-902, 2008.
[20]   Nabovati A., pore level simulation of single and two phase flow in porous media using lattice Boltzmann method. PhD thesis, 2009.
[21]   Dong B., Yan Y.Y., Li W.Z. and Song Y.C., Simulation of the Influence of Surface Wettability on Viscous Fingering Phenomenon in Porous Media. Journal of Bionic Engineering, 7 pp. 267–275, 2010.
[22]   Dullien F.A.L., Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego, CA. 1992.
Huang H., Thorne D.T.J.r., Schaap M.G. and Sukop M.C., Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. PHYSICAL REVIEW E, 76, 066701, 2007.