تحلیل پارامتری توزیع ‎دما و کارایی مبادله‎کن‎های گرمائی سه‎جریانی با سه ارتباط گرمائی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی سیتم‎های انرژی، دانشگاه خواجه نصیر طوسی، تهران، ایران

2 استادیار، گروه مهندسی سیستم‎های انرژی، پژوهشگاه نیرو، تهران، ایران

3 استاد، گروه مهندسی سیستم‌های انرژی، دانشگاه خواجه نصیر طوسی، تهران، ایران

چکیده

علاوه بر ارتباط گرمائی با محیط، خواص متغیر جریان‎ها و هدایت گرمائی طولی در دیواره‎ها، کارایی مبادله‎کن‎های گرمائی سه‎جریانی به شدت متاثر از پارامترهای هندسی و طراحی می‎باشد. پارامترهای هندسی، طول و قطر لوله‎های مبادله‎کن و پارامترهای طراحی از قبیل، دمای محیط و دبی هر یک از جریان‎ها می‎باشد. در این مقاله تاثیر پارامترهای هندسی و طراحی بر توزیع دما و کارایی مبادله‎کن‎های سه‎جریانی با سه ارتباط گرمائی، مورد بررسی قرار گرفته است. معادلات حاکم بر جریان‎ها با در نظر گرفتن ارتباط گرمائی با محیط و خواص متغیر جریان‎ها، استخراج و بر مبنای قانون اول ترمودینامیک و به روش تحلیلی، حل می‎شوند. سرمایش جریان گرم و گرمایش جریان سرد، دو هدف از بکارگیری مبادله‎کن به منظور بررسی کارایی، می‎باشند. تاثیر نفوذ حرارت از محیط، افزایش دمای جریان سرد است، که منجر به افزایش جزئی در پروفیل دمایی گرم می‎شود، که به افزایش کارایی سرد و کاهش کارایی گرم میانجامد. افزایش دمای محیط، موجب تقویت تاثیرات ناشی از نفوذ حرارت از محیط می‎شود. افزایش قطر لوله بیرونی مبدل که در آن جریان سرد در جریان است و در تماس حرارتی با محیط قرار دارد موجب فاصله دمایی جریان گرم و سرد در هر مقطع عمود بر جریان می‎شود و به کاهش هر دو کارایی گرم و سرد می‎انجامد. افزایش دبی جرمی سیال سرد به افزایش کارایی گرم و کاهش کارایی سرد منجر می‎شود. در اثر افزایش دبی جرمی جریان گرم، هر دو کارایی گرم و سرد مبدل افزایش می‎یابد.

کلیدواژه‌ها

موضوعات


[1]  Sekulic D. P., Shah R. K., Thermal design theory of three-fluid heat exchangers, Heat Transfer, Vol. 26, pp. 219-329, 1995.
[2]  Krishna V., Hegde P. G., Subramanian N., Seetharamu K. N., Effect of ambient heat-in-leak on the performance of a three fluid heat exchanger, for cryogenic applications, using finite element method, International Journal of Heat and Mass Transfer, Vol. 55, pp. 5459-5470, 2012.
[3]  Shrivastava D., Ameel T. A., Three-fluid heat exchangers with three thermal communications. Part A: General mathematical model, International Journal of Heat and Mass Transfer, Vol. 47, pp. 3855-3865, 2004.
[4]  Shrivastava D., Ameel T. A., Three-fluid heat exchangers with three thermal communications. Part B: Effectiveness evaluation, International Journal of Heat and Mass Transfer, Vol. 47, pp. 3867-3875, 2004.
[5]  Zhao M., Li Y., New integral-mean temperature difference model for thermal design and simulation of parallel three-fluid heat exchanger, International Journal of Thermal Sciences, Vol. 59, pp. 203-213, 2012.
[6]  Saeid N. H., Seetharamu K. N., Finite element analysis for co-current and counter-current parallel flow three-fluid heat exchanger, International Journal of Numerical Methods for Heat & Fluid Flow, Vol.16, pp. 324-337, 2006.
[7]  Gupta P., Atrey M. D., Performance evaluation of counter flow heat exchangers considering the effect of heat-in-leak and longitudinal conduction for low temperature applications, Cryogenics, Vol. 40, pp. 469-474, 2000.
[8]  Krishna V., Spoorthi S., Hegde P. G., Seetharamu K. N., Effect of longitudinal wall conduction on the performance of a three-fluid cryogenic heat exchanger with three thermal communications, International Journal of Heat and Mass Transfer,Vol. 62, pp. 567-577, 2013.
[9]  Chato J. C., Laverman R. J., and Shah J. M., Analyses of parallel flow, multi-stream heat exchangers, International Journal of  Heat and  Mass Transfer, Vol. 14, pp. 1691-1703, 1971.
[10]             Morley T. B., Exchange of heat between three fluids,  Engineer, Vol. 155, p. 314, 1933.
[11]             Sorlie T., Three-fluid heat exchanger design theory -Counter   and parallel flow, Department of Mechanic Engineering,Stanford University, Stanford, California, No. 57, 1962.
[12]             Yuan P., Kou H. S., The comparison of longitudinal wall conduction effect on the crossflow heat exchangers including  three fluid streams with different arrangements, Applied Thermal Engineering, Vol. 21, pp. 1891-1907, 2001.
[13]             Ruan D. F., Yuan X. F., Wu S. Y., and Li Y. R., Exergy effectiveness analysis of threefluid heat exchanger, Journal of Superconductivity and Novel Magnetism, Vol. 23, pp. 1127-1131, 2010.
[14]             Ruan D. F., Yuan X. F., Li Y. R., and Wu S. Y., Entropy generation analysis of parallel and counter-flow three-fluid heat exchangers with three thermal communications, Journal of Non-Equilibrium Thermodynamics, Vol. 36, pp. 141-154, 2011.
[15]             Singh S. K., Kumar S., Mishra M., and Jha P. K., Transient behavior of co-current parallel flow three-fluid heat exchanger, International Communications in Heat and Mass Transfer, Vol. 52, pp. 46-50, 2014.
[16]             Singh S. K., Mishra M., and Jha P. K., Experimental investigations on thermo-hydraulic behaviour of triple concentric-tube heat exchanger, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 229, pp. 299-308, 2015.
[17]             Veerabhadrappa K., Seetharamu K. N., and Hegde P. G., Effect of ambient heat-in-leak on transient behaviour of three-fluid heat exchanger with two thermal communications using finite element method. Materials Today: Proceedings, Vol. 4, pp. 10596-10602, 2017.
[18]             Zhang W., Shao S., Zhang H., and Tian C., Numerical Investigation on Three-fluid Heat Exchanger for Hybrid Energy Source Heat Pumps. Energy Procedia, Vol. 105, pp. 1692-1699, 2017.
[19]             Miller J. W., J r., Schon G. R., and Yaws C. L., Correlations, Chemistry Engineering, vol. 83, No. 23, p.129, 1976.
[20]             Bergman T. L., Lavine A. S., Incropera F. P., Dewitt D. P.,Introduction to heat transfer, Fifth edition, pp. 455-493. Wiley, New York, 2007.