[1] Gurson A. L., Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, Vol. 99, No. 1, pp. 2-15, 1977.
[2] Marciniak Z., Kuczyński K., Limit strains in the processes of stretch-forming sheet metal. International Journal of Mechanical Sciences, Vol. 9, No. 9, pp. 609-620, 1967.
[3] Tvergaard V., On localization in ductile materials containing spherical voids. International Journal of Fracture, Vol. 18, No. 4, pp. 237-252, 1982.
[4] Tvergaard V., Needleman A., Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, Vol. 32, No. 1, pp. 157-169, 1984.
[5] Banabic D., A. Kami., Applications of the Gurson’s model in sheet metal forming. 5th International Conference on New Forming Technology (ICNFT 2018). Bremen, Germany, 2018.
[6] Li Z., Bilby B., Howard I., A study of the internal parameters of ductile damage theory. Fatigue & Fracture of Engineering Materials & Structures, Vol. 17, No. 9, pp. 1075-1087, 1994.
[7] Zhang C., Leotoing L., Zhao G., Guines D., Ragneau E., A methodology for evaluating sheet formability combining the tensile test with the M–K model. Materials Science and Engineering: A, Vol. 528, No. 1, pp. 480-485, 2010.
[8] Cao T.-S., Maire E., Verdu C., Bobadilla C., Lasne P., Montmitonnet P., Bouchard P.-O., Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests–Application to the identification of a shear modified GTN model. Computational Materials Science, Vol. 84, pp. 175-187, 2014.
[9] Fratini L., Lombardo A., Micari F., Material characterization for the prediction of ductile fracture occurrence: an inverse approach. Journal of Materials Processing Technology, Vol. 60, No. 1-4, pp. 311-316, 1996.
[10] Abbasi M., Bagheri B., Ketabchi M., Haghshenas D., Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Computational Materials Science, Vol. 53, No. 1, pp. 368-376, 2012.
[11] Abbasi M., Ketabchi M., Izadkhah H., Fatmehsaria D., Aghbash A., Identification of GTN model parameters by application of response surface methodology. Procedia Engineering, Vol. 10, pp. 415-420, 2011.
[12] Kami A., Dariani B. M., Vanini A. S., Comsa D. S., Banabic D., Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model. Journal of Materials Processing Technology, Vol. 216, pp. 472-483, 2015.
[13] Kami A., Mollaei Dariani B., Sadough Vanini A., Comsa D.-S., Banabic D., Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing. Proc Rom Acad A, Vol. 15, pp. 300-309, 2014.
[14] Abendroth M., Kuna M., Identification of ductile damage and fracture parameters from the small punch test using neural networks. Engineering Fracture Mechanics, Vol. 73, No. 6, pp. 710-725, 2006.
[15] ظهور م.، شاهی س.، حسین پورگللو م.، بررسی تجربی و تئوری تعیین ضرایب معیارهای پیشرفته و نمودار حد شکل دهی آلیاژ آلومینیوم 2024، مجله مهندسی مکانیک مدرس، د. 16، ش. 1، ص 192-202.
[16] Schwindt C., Schlosser F., Bertinetti M.A., Stout M., Signorelli J.W., Experimental and Visco-Plastic Self-Consistent evaluation of forming limit diagrams for anisotropic sheet metals: An efficient and robust implementation of the M-K model, International Journal of Plasticity, Vol. 73, pp. 62-9, 2015.
[17] حبیبی م.، غضنفری ا.، عاصم پور ا.، نقد آبادی ر.، هاشمی ر.، به دست آوردن منحنی حد شکلدهی با استفاده از دو مدل المان محدود بهبودیافته، نشریه علمی پژوهشی امیرکبیر - مهندسی مکانیک، د. 48، ش. 4، ص 379-388، 1395.
[18] Padwal S., Chaturvedi R., Rao U., Influence of superimposed hydrostatic tension on void growth in the neck of a metal sheet in biaxial stress fields. Part-II-Plastic instability. Journal of Materials Processing Technology, Vol. 32, No. 1-2, pp. 99-107, 1992.
[19] Melander A., A new model of the forming limit diagram applied to experiments on four copper-base alloys, Materials Science and Engineering, Vol. 58, No. 1, pp. 63-88, 1983.
[20] حسینی م. ع.، حسینی پور س. ج. و بخشی جویباری م.، بررسی تئوری اثر حفرهزایی داخلی بر حد شکلدهی فولاد IFبا استفاده از مدل M-K و تابع پتانسیل پلاستیک گارسون. مجلۀ مهندسی مکانیک مدرس، د. 17، ش. 11، ص 353-360، 1396.
[21] Hosseini M. E., Hosseinipour S. J., Bakhshi-Jooybari M., Theoretical FLD Prediction Based on MK Model using Gurson's Plastic Potential Function for Steel Sheets. Procedia Engineering, Vol. 183, pp. 119-124, 2017.
[22] International Standard ISO 12004-2, Metallic Materials-sheet and Strip-Determination of Forming Limit Curves. Part 2: Determination of Forming Limit Curves in the Laboratory. Geneva, Switzerland: International Organization for Standardization.
[23] Aghaie-Khafri M., Mahmudi R., Predicting of plastic instability and forming limit diagrams. International Journal of Mechanical Sciences, Vol. 46, pp. 1289-1306, 2004.
[24] Khuri A. I. Response surface methodology and related topics. World scientific, Massachusetts, 2006.
[25] چلوویان م.، مدلسازی نمودار حد شکل پذیری ورقهای فلزی به کمک مدل آسیب گورسون. پایاننامۀ کارشناسیارشد، دانشگاه سمنان، 1396.