[1] Matsunaga H., Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Composite structures, Vol. 82, No. 4, pp. 499-512, 2008.
[2] Malekzadeh P., Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations, Composite Structures, Vol. 89, No. 3, pp. 367-373, 2009.
[3] Shen H.-S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, Vol. 91, No. 1, pp. 9-19, 2009.
[4] Yas M., Aragh B. S., Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation, International Journal of Engineering Science, Vol. 48, No. 12, pp. 1881-1895, 2010.
[5] Hosseini-Hashemi S., Es’Haghi M., Taher H. R. D., Fadaie M., Exact closed-form frequency equations for thick circular plates using a third-order shear deformation theory, Journal of Sound and Vibration, Vol. 329, No. 16, pp. 3382-3396, 2010.
[6] Z.-X. Wang, H.-S. Shen, Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Computational Materials Science, Vol. 50, No. 8, pp. 2319-2330, 2011.
[7] Hedayati H., Aragh B. S., Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on Pasternak foundation, Applied Mathematics and Computation, Vol. 218, No. 17, pp. 8715-8735, 2012.
[8] Zhu P., Lei Z., Liew K. M., Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, Vol. 94, No. 4, pp. 1450-1460, 2012.
[9] Mantari J., Soares C. G., A novel higher-order shear deformation theory with stretching effect for functionally graded plates, Composites Part B: Engineering, Vol. 45, No. 1, pp. 268-281, 2013.
[10] Heshmati M., Yas M., Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads, Materials & Design, Vol. 49, pp. 894-904, 2013.
[11] Alibeigloo A., Liew K., Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity, Composite Structures, Vol. 106, pp. 873-881, 2013.
[12] Lei Z., Liew K., Yu J., Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment, Composite Structures, Vol. 106, pp. 128-138, 2013.
[13] Lei Z., Liew K. M., Yu J., Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Composite Structures, Vol. 98, pp. 160-168, 2013.
[14] Jam J., Pourasghar A., Kamarian S., Effect of the aspect ratio and waviness of carbon nanotubes on the vibrational behavior of functionally graded nanocomposite cylindrical panels, Polymer Composites, Vol. 33, No. 11, pp. 2036-2044, 2012.
[15] Jam J., Pourasghar A., Maleki S., Characterizing elastic properties of carbon nanotube‐based composites by using an equivalent fiber, Polymer Composites, Vol. 34, No. 2, pp. 241-251, 2013.
[16] Fallah A., Aghdam M., Kargarnovin M., Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method, Archive of Applied Mechanics, pp. 1-15, 2013.
[17] Han Y., Elliott J., Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, Vol. 39, No. 2, pp. 315-323, 2007.