[1] Kumar K, Ghosh P K., Improving mechanical and thermal properties of TiO2-epoxy nanocomposite. Composites Part B: Engineering, pp. 353-360, 2016.
[2] Yue L, Pircheraghi, G., Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects. Carbon, Vol. 78, pp. 268-278, 2014.
[3] Ying Z, Xianggao L., Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties. Composite Structures, Vol. 132, pp. 44-49, 2015.
[4] Jumahat A, Soutis C., Tensile Properties of Nanosilica/Epoxy nanocomposites. Procedia Engineering, Vol. 41, pp. 1634-1640, 2012.
[5] Zhang H, Zhang Z K, Friedrich Eger C., Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia, Vol. 54, pp. 1833-1842, 2006.
[6] Conradi M, Zorko M, Kocijan A, Verpoest I., Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers. Materials Chemistry and Physics, Vol. 137, pp. 910-915, 2013.
[7] Mirzapour A, Asadollahi M H, Baghshaei S, Akbari M., Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Composites Part A: Applied Science and Manufacturing, Vol. 63, pp. 159-167,2014.
[8] Jacob S, Suma K K, Mendez J M, George K E., Reinforcing effect of nanosilica on polypropylene–nylon fiber composite. Materials Science and Engineering: B, Vol. 168, pp. 245-249, 2010.
[9] Halder S, Ahemad S., Epoxy/Glass Fiber Laminated Composites Integrated with Amino Functionalized ZrO2 for Advanced Structural Applications. ACS Applied Materials & Interfaces, Vol. 8, No.3, pp. 1695-1706, 2016.
[10] Fereshteh-Saniee F, Majzoobi GH, Bahrami M., An Experimental Study on the Behavior of Glass-Epoxy Composite at Low Strain Rates. J. Mater. Proc. Technol., pp. 162-163, 39-45, 2005.
[11] Motahari S, Naderi far A., Strengthening of Composites Used in Marine Structures. 5th National Conference of Iran Marine Industries, Kish Island, Iran Marine Engineering Society, https://www.civilica.com/Paper-NSMI05-NSMI05_005.html, 382, 2005. (In Persian فارسی )
[12] Rotem A, Lifshitz JM., Longitudinal Strength of Unidirectional Fibrous Composite under High Rate of Loading. Proceeding of 26th Annual Technology Conference, Society for Plastics Industry, Reinforced Plastics/Composites Division, Washington DC, Section 10-G, pp. 1-10, 1971.
[13] Uddin M F, Sun C T., Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Composites Science and Technology, Vol. 68, pp. 1637-1643,2008.
[14] Chen C, Justice R S, Schaefer D W, Baur J W., Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties. Polymer, Vol. 49, pp. 3805-3815, 2008.
[15] Haque A, Shamsuzzoha M, Hussain F, Dean D., S2-Glass/Epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. J. Compos. Mater. Vol. 37, pp. 1821-1837, 2003.
[16] Pol M H, Liaghat Gh H, Mehrabani Yeganeh E, Afrouzian A., Experimental investigation of nanoclay and nanosilica particles effects on mechanical properties of glass epoxy composites. Modares Mechanical Engineering, Vol. 14, No. 16, pp. 76-82, 2015. (In Persianفارسی )
[17] http://www.bitexcomposite.com/index.php/products/resin
[18] Thomason G L, Valug MA., Influence of fiber length and concentration on the properties of glass fiber-reinforced polypropylene: 4. Impact properties. Composites, part A, Vol. 28, pp. 277-288, 1997.
[19] Hoseini SAV, Pol MH., Investigation of the tensile and the flexural properties of the glass/epoxy composites reinforced with nanoclay particles. Modares Mechanical Engineering, Vol. 14, No. 7, pp. 103-108, 2014. (In Persianفارسی)
[20] Rahman N A, Hassan A, Yahya R, Lafia-Araga R A, Hornsby P R., Microstructural, thermal, and mechanical properties of injection-molded glass fiber/nanoclay/polypropylene composites. J. Reinf. Plast. Compos. Vol. 31, No. 4, pp. 269-281, 2012.