تحلیل ترمواقتصادی سیستم ترکیبی پیل سوختی اکسید جامد، توربین گاز، توربین بخار برای دو حالت اتصال مستقیم و غیر مستقیم پیل سوختی و توربین گاز

نوع مقاله : مقاله پژوهشی

نویسنده

تحصیلات تکمیلی کرمان

چکیده

در کار حاضر سیستم ترکیبی پیل سوختی اکسید جامد، توربین گاز و توربین بخار از نظر اقتصادی و ترمودینامیکی بررسی شده است. به منظور تحلیل اقتصادی هزینه سالیانه شده و برای تحلیل ترمودینامیکی با حل معادله بقای انرژی، راندمان انرژی بدست آمده است. اتصال پیل و توربین گاز، به صورت مستقیم یا غیر‌مستقیم و همچنین گرمایش واکنشگرهای ورودی به پیل، تماما با خروجی توربین گاز یا پیش گرمایش با خروجی توربین گاز و گرمایش نهایی با خروجی محفظه پس‌سوز، چهار پیکربندی متفاوت ایجاد می‌کنند که از نظر اقتصادی و ترمودینامیکی مورد بررسی قرار گرفته‌اند. این چهار پیکربندی می توانند شرایطی را ایجاد کنند که فشار کاری پیل و توربین گاز متفاوت یا یکسان باشد و از طرفی دمای کارکردی متفاوتی برای پیل ایجاد شود. نتایج نشان می‌دهد که سیستم ترکیبی با اتصال مستقیم و گرمایش واکنشگرها تنها با خروجی توربین گاز، به‌ازای شدت جریان A/m2 1000 با راندمان 3/59% و هزینه سالیانه $/year 416290 مناسب‌ترین سیستم به لحاظ ترمودینامیکی و به‌ازای شدت جریان A/m2 5000 با راندمان 7/52% و هزینه سالیانه $/year 212438 مناسب‌ترین سیستم به لحاظ اقتصادی است.

کلیدواژه‌ها


[1]     McLarty D., Brouwer J. and Samuelsen S., Hybrid Fuel Cell Gas Turbine System Design and Optimization. Journal of Fuel Cell Science and Technology, Vol. 10, 041005-1, 2013.
[2]     Chaney J., Tharp R., Wolf W., Fuller A. and Hartvigson J., Fuel Cell/Micro Turbine Combined Cycle. Final Report, McDermott Technology, Inc. Alliance, 1999.
[3]     Lee G. and Sudhoff F. Fuel Cell/Gas Turbine System Performance Studies. Fuel Cells ‘96 Review Meeting, Morgantown, West Virginia, 1996.
[4]     Massardo A. F. and Lubelli F. Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part I-Cell Model and Cycle Thermodynamic Analysis. Journal of Engineering for Gas Turbines and Power, Vol. 122, pp. 27-35, 2000.
[5]     Ide H., Yoshida T., Ueda H. and Horiuchi N., Natural Gas Reformed Fuell Cell Power Generation System-a Comparison of Three System Efficiencies. 24th Intersociety Energy Conversion Engineering Conference, Washington DC, 1989.
[6]     Costamagna P., Magistri L. and Massardo A. F., Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine. Journal of Power Sources, Vol. 96, pp. 352-368, 2001.
[7]     Chan S. H., Ho H. K. and Tian Y., Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant. Journal of Power Sources, Vol. 109, pp. 111-120, 2002.
[8]     Rajashekara K., Hybrid Fuel Cell Strategies for Clean Power Generation. IEEE Transactions on industry applications, Vol. 41, pp. 682-689, 2005.
[9]     Song T. W., Sohn J. L., Kim J. H., Kim T. S., Ro S. K. and Suzuki K., Performance Analysis of a Tubular Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid Power System Based on a Quasi-Two Dimensional Model. Journal of Power Sources, Vol. 142, pp. 30-42, 2005.
[10]  Lai W. H., Hsiao Ch. A., Lee Ch. H., Chyou Y. P. and Tsai Y. Ch., Experimental Simulation on the Integration of Solid Oxide Fuel Cell and Micro-Turbine Generation System. Journal of Power Sources, Vol. 171, pp. 130-139, 2007.
[11]  Komatsu Y. and Kimijima S., Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell-Micro Gas Turbine Hybrid System. Journal of energy, Vol. 35, pp. 982-988, 2010.
[12]  Ameri M. and Mohammadi R. Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. International journal of energy research, Vol. 37, pp. 412-425, 2013.
[13]  Dang Zh., Zhao H. and Xi G., Conceptual Design and Performance Analysis of SOFC/Micro Gas Turbine Hybrid Distributed Energy System. Journal of Fuel Cell Science and Technology, Vol. 12, pp. 1-5, 2015.
[14]  Saebea D., Authayanun S., Patcharavorachot Y. and Arpornwichanop A., Effects of SOFC Exhaust Gas Recirculation on Performance of Solid Oxide Fuel Cell-Gas Turbine Hybrid System Utilizing Renewable Fuels. ECS Transactions, Vol. 68, pp. 301-313, 2015.
[15]  Massardo A. F. and Magistri L., Internal Reforming Solid Oxide Fuel Cell Gas Turbine Combined Cycles (IRSOFC-GT)—Part II: Exergy and Thermoeconomic Analyses. Journal of Engineering for Gas Turbines and Power, Vol. 125, pp. 67-74, 2003.
[16]  Sreeramulu M. and Gupta A.V.S.S.K.S., Exergy analysis of gas turbine – solid oxide fuel cell-based combined cycle power plant. Int. J. Energy Technology and Policy, Vol. 7, pp. 469-488, 2011.
[17]  Fatahian E., Tonekaboni N. and Fatahian H., exergy analysis of combined cycle of gas turbine and solid oxide fuel cell in different comparison ratios. International Journal of Scientific World, Vol. 4, pp. 43-47, 2016.
[18]  Khani L., Saberi Mehr A., Yari M. and Mahmoudi S. M. S., Multi-objective optimization of an indirectly integrated solid oxide fuel cell-gas turbine cogeneration system. International journal of hydrogen energy, Vol. 41, pp. 21470-21488, 2016.
[19]  Wu X. J. and Zhu X. J., Optimization of a solid oxide fuel cell and micro gas turbine hybrid system. International journal of energy research, Vol. 37, pp. 242-249, 2013.
[20]  پیرکندی ج.، قاسمی م. و حامدی م. ح.، تحلیل عملکرد ترمودینامیکی یک چرخه هیبریدی پیل سوختی اکسید جامد و میکروتوربین گازی در یک سیستم تولید همزمان. نشریه علمی- پژوهشی سوخت و احتراق، د. 4، ش. 2، ص 67-89، 1390.
[21]  Arsalis A. and Von Spakovsky M. R., Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell-Gas Turbine-Steam Turbine Power Plants Ranging From 1.5 MWe to 10 MWe. Journal of Fuel Cell Science and Technology, Vol. 6, pp. 1-12, 2009.
[22]  Eveloy V., Karunkeyoon W., Rodgers P. and Al Alili A., Energy, exergy and economic analysis of an integrated solid oxide fuel cell e gas turbine e organic Rankine power generation system. International journal of hydrogen energy, Vol. 41, pp. 13843-13858, 2016.
[23]  Choi J. H., Ahn J. H. and Kim T. S., Performance of a triple power generation cycle combining gas/steam turbine combined cycle and solid oxide fuel cell and the influence of carbon capture. Journal of Applied Thermal Engineering, Vol. 71, pp. 301–310, 2014.
[24]  Welaya Y. M. A., Mosleh M. and Ammar N. R., Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. International Journal of Naval Architecture and Ocean Engineering, Vol. 5, pp. 529–574, 2013.
[25]  Welaya Y. M. A., Mosleh M. and Ammar N. R., Thermodynamic analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications. Brodogradnja, Vol. 65, pp. 97–116, 2014.
[26]  Obara S., Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics. Journal of Applied Energy, Vol. 141, pp. 19–31, 2015.
[27]  Oryshchyn D., Harun N. F., Tucker D., Bryden K. M. and Shadle L., Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems. Journal of Applied Energy, Vol. 228, pp. 1953–1965, 2018.
[28]  Singh R. and Singh O., Comparative study of combined solid oxide fuel cell-gas turbine-Organic Rankine cycle for different working fluid in bottoming cycle. Energy Conversion and Management, Vol. 171, pp. 659–670, 2018.
[29]  Sadeghi S. and Ameri M., Study the Combination of Photovoltaic Panels With Different Auxiliary Systems in Grid-Connected Condition. Journal of Solar Energy Engineering, Vol. 136, pp. 636-647, 2014.
[30]  Singhal S. C., Advances in Solid Oxide Fuel Cell technology. Journal of Solid State Ionic, Vol. 135, pp. 305-313, 2000.