1-
[1] Lucy, L. B. A numerical approach to the testing of the fission hypothesis. The astronomical journal, Vol. 82, pp. 1013-1024, 1977.
[2] Gingold, R. A., Monaghan, J. J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, Vol. 181, pp. 375-389, 1977.
[3] Monaghan, J. J. Simulating Free Surface Flows with SPH. Journal of Computational Physics, Vol. 110, pp. 399-406, 1994.
[4] Takeda, H., Miyama, S. M., Sekiya, M. Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progress of Theoretical Physics, Vol. 92, pp. 939-960, 1994.
[5] Morris, J. P., Fox, P. J., Zhu, Y. Modeling low Reynolds number incompressible flows using SPH. Journal of computational physics, Vol. 136. pp. 214-226, 1997.
[6] Ellero, M., Serrano, M., Espanol, P. Incompressible smoothed particle hydrodynamics. Journal of Computational Physics, Vol. 226, pp. 1731-1752, 2007.
[7] Khayyer, A., Gotoh, H., Shao, S. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, Vol. 55, pp. 236-250, 2008.
[8] Swegle, J., Hicks, D., Attaway, S. Smoothed particle hydrodynamics stability analysis. Journal of computational physics, Vol. 116, pp. 123-134, 1995.
[9] Welton, W. C. Two-dimensional PDF/SPH simulations of compressible turbulent flows. Journal of Computational Physics, Vol. 139, pp. 410-443, 1998.Ozmen-Cagatay, H., Kocaman, S. Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research, Vol.48: 603-611, 2010.
[10] Wagner, G. J., Liu, W. K. Turbulence simulation and multiple scale subgrid models. Computational Mechanics, Vol. 25, pp. 117-136, 2000.
[11] Violeau, D., Issa, R. Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview. International Journal for Numerical Methods in Fluids, Vol. 53, pp. 277-304, 2007.
[12] Lee, E., Violeau, D., Benoit, M., Issa, R., Laurence, D., Stansby, P., Prediction of wave overtopping on coastal structures by using extended Boussinesq and SPH models, Proceeding of Coastal Engineering, 2007.
[13] مقصودی م، شفیعی فر م. مدل سازی شکست سد با بستر فرسایش پذیر با استفاده از روش SPH، مجله علمی-پژوهشی هیدرولیک، شماره 10 (3)، ص. 41-52، 1394.
[14] Tong, M., Browne, D. J. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. International Journal of Heat and Mass Transfer, Vol. 73, pp. 284-292, 2014.
[15] Cummins, S. J., Rudman, M. An SPH projection method. Journal of computational physics, Vol. 152, pp. 584-607, 1999.
[16] Hosseini, S., Manzari, M., Hannani, S. A fully explicit three-step SPH algorithm for simulation of non-Newtonian fluid flow. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 17, pp. 715-735, 2007.
[17] Hu, X., Adams, N. A. An incompressible multi-phase SPH method. Journal of computational physics, Vol. 227, pp. 264-278, 2007.
[18] Leroy, A., Violeau, D., Ferrand, M., Kassiotis, C. Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. Journal of Computational Physics, Vol. 261, pp. 106-129, 2014.
[19] Daly, E., Grimaldi, S., Bui, H. H. Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes. Advances in Water Resources, Vol. 97, pp. 156-167, 2016.
[20] Ghadampour, Z., Talebbeydokhti, N., Hashemi, M. R., Nikseresht, A. H, Neilli, S. P. Numerical simulation of free surface mudflow using incompressible sph. IJST, Transactions of Civil Engineering, Vol. 37, No. C1, pp. 77-95, 2013.
[22] Grenier, N., Antuono, M., Colagrossi, A., Le Touzé, D., Alessandrini, B. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics, Vol. 228, pp. 8380-8393, 2009.
[23] Monaghan, J. J. Extrapolating B splines for interpolation. Journal of Computational Physics, Vol. 60, pp. 253-262, 1985.
[24] Hirt, C. W., Amsden, A. A., Cook, J. L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, Vol. 14, pp. 227-253, 1974.
[25] Molteni, D., Colagrossi, A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Communications, Vol. 180, pp. 861-872, 2009.
[26] Girolamo, P., Wu, T., Liu, P., Panizzo, A., Bellotti, G., Risio, M. Numerical simulation of three dimensional tsunamis water waves generated by landlsides: comparison between physical model results, VOF, SPH, Proceedings of the Coastal Engineering Conference, 2007.
[27] Ozmen-Cagatay, H., Kocaman, S. Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research, Vol. 48, pp. 603-611, 2010.
[28] Fraccarollo, L., Capart, H. Riemann wave description of erosional dam-break flows. Journalof Fluid Mechanics, Vol. 461, pp. 183-228, 2002.
[29] Ken-Ichi, K. A plasticity theory for the kinematics of ideal granular materials. International Journal of Engineering Science, Vol. 20, pp 1-13, 1982.
[30] Neshaei, M. L., Holmes, P., Salimi, M. G. A semi-empirical model for beach profile evolution in the vicinity of reflective structures. Ocean Engineering, Vol. 36, pp. 1303-1315, 2009.
[31] Rzadkiewicz, S. A., Mariotti, C., Heinrich, P. Numerical simulation of submarine landslides and their hydraulic effects. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 123, pp. 149-157,1997.