رفتار مکانیکی کامپوزیت های اپوکسی- الیاف شیشه خودترمیم شونده بر پایه‌ی کانال‌های میکروآوندی تحت شرایط بارگذاری کششی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی وعلم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، دانشکده مهندسی وعلم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 دانشجوی دکتری، دانشکده مهندسی وعلم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران

چکیده

در این تحقیق یک سیستم خودترمیم بر پایه کانال‌های میکروآوندی در کامپوزیت زمینه پلیمری الیافی به‌کار گرفته شده است. کانال‌های میکروآوندی با روش از بین بردن پیش­شکل‌های جامد، که در هنگام ساخت نمونه داخل ساختار کامپوزیت قرار داده شده بودند، ایجاد شدند. برخی از کانال‌ها با مخلوط رزین اپوکسی و سخت کننده انیدریدی و برخی دیگر با شتاب دهنده‌ی مایع پر شدند. زمانی­که سازه تحت بارگذاری قرار بگیرد باعث ایجاد آسیب‌هایی مانند میکروترک‌ها می‌شود که این میکروترک‌ها در ادامه کار رشد کرده و پس از شکستن میکروکانا‌ل‌ها باعث آن می‌شوند که ماده ترمیمی ذخیره شده در کانال‌ها به محل آسیب جریان یابد و در اثر گذشت زمان آسیب ایجادشده حذف شود. هدف از این تحقیق، بررسی زمان ترمیم و کسر حجمی ماده ترمیمی بر روی راندمان ترمیم ساختار پس از ایجاد آسیب اولیه می‌باشد. برای این منظور، استحکام کششی نمونه‍ها‌ در مدت زمان‍های ترمیممتفاوت پس از ایجاد آسیب، یه دست آورده شد که مشاهدات حاکی از آن بود که بیشترین راندمان ترمیم به میزان 9/64 درصد در نمونه‌ی با کسر حجمی 4 درصد پس از گذشت 7 روز حاصل شد.

کلیدواژه‌ها

موضوعات


1)       Wu D. Y., Meure S., and Solomon D., “Self-healingpolymeric materials: A review of recent developments” , Prog. Polym. Sci, Vol. 33, No. 5, pp. 479–522, 2008.
2)       Hager M. D., Greil P., Leyens C.,“Self‐Healing Materials”, Advanced Materials, vol. 22, no. 47, pp. 5424- 5430,  2010 Dec 14.
3)       مهرسا امامی،الهام آرام،علیرضامهدویان،”پلیمرهای
هوشمند : 3-پلیمرهایخودترمیمی“،فصلنامه علمی ترویجی،
شماره 1،صفحه 38-27،سال 1392.
4)       White S. R., Blaiszik B. J., Kramer S. L. B., Olugebefola S. C., Moore J. S., and Sottos N. R., Self-healing polymers and composites, Am. Sc., Vol. 99, No. 5, pp. 392–399, 2011.
5)       Saeed M. U., Chen Z., and Li B., Manufacturing strategies for microvascular polymeric composites: A review, Compos. Part A Appl. Sci. Manuf, Vol. 78, pp. 327–340, 2015.
6)       Dry C. M., & Sottos N. R., Passive smart self-repair in polymer matrix composite materials, In 1993 North American Conference on Smart Structures and Materials, International Society for Optics and Photonics,  1993 Jul 23.
7)       Dry C., Procedures developed for self-repair of polymer matrix composite materials, Composite structures, Vol. 35, No. 3, pp. 263-269, 1996.
8)       Dry C. M., inventor, Self-repairing, reinforced matrix materials, United States patent US 6,261,360. 2001.
9)       Norris C. J., White J. A. P., McCombe G., Chatterjee P., Bond I. P., Trask R. S., Autonomous stimulus triggered self-healing in smart structural composites, Int. J. Smart Mater Structure, Vol. 21, pp. 1-10, 2012.
10)   Bleay S. M., Loader C. B., Hawyes V. J., Humberstone L., Curtis P. T., Winchester S. and Hay, J. N., Smart repair techniques for polymeric composite systems. Proc. ECCM9, pp.4-7, Brighton, UK.
11)   Bleay S. M., Loader C. B., Hawyes V. J., Humberstone L., Curtis P. T., A smart repair system for polymer matrix composites, Int. J. Composites Part A, Vol. 32, no. 12, pp. 1767–1776, 2001.
12)   Pang J. W. C., and Bond I. P., Self-Repair and enhanced damage visibility in a hollow fibre reinforced plastic. Proc. 11th European Conf. on Composite Materials (Rhodes, May–June 2004). 2004.
13)   Trask R. S., Bond I. P., Biomimetic self-healing of advanced composite structures using hollow glass fibres, Int. J. Smart Material Structure, Vol. 15 , pp. 704–710, 2006.
14)   Track R. S., G. J. Williams., Bond I. P., Bioinspired self-healing of advanced composite structures using hollow glass fibers, J. R. Soc. Interface, Vol. 4, pp. 363–371, 2007.
15)   Williams G., Trask R., and Bond I., A self-healing carbon fibre reinforced polymer for aerospace applications, CompositesPart A: Applied Science and Manufacturing, Vol. 38, No. 6, pp. 1525-1532, 2007.
16)   Williams G. J., Bond I. P., Trask R. S., Compression after impact assessment of self-healing CFRP, Composites: Part A, Vol. 40, pp. 1399–1406, 2009.
17)   Hamilton A. R., Sottos N. R., White S. R., “Pressurized vascular systems for self-healing materials”, J. R. Soc. Interface, Vol. 9, pp. 1020- 1028, 2012.
18)   Wu A. S., Coppola A. M., Sinnott M. J., Chou T.W., Thostenson E. T., Byun J.H., Sensing of damage and healing in three-dimensional braided composites with vascular channels, Int. J.  Compos Sci Technol, Vol. 72, No. 13, pp. 1618-1626, 2012.
19)   Trask R. S., Bond I. P., Bioinspired engineering study of Plantae vascules for self-healing composite structures, J. R. Soc. Interface,  Vol. 7, pp. 921-931, 2010.
20)   Norris C. J., Meadway G. J., O’Sullivan M. J., Bond I. P., Trask R. S. Self-healing fibre reinforced composites via a bioinspired vasculature, Adv Funct Mater, Vol. 21, pp. 3624–33, 2011.
21)   Hamilton A. R., Sottos N. R., and White S. R., Local strain concentrations in a microvascular network , Proc. Soc. Exp. Mech. Inc., Vol. 67, pp. 255–263, 2010.