بررسی عددی تأثیر بلوک داغ بر آهنگ انتقال گرمای جابه‌جایی طبیعی داخل یک حفره ⅂ شکل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه دامغان، دامغان، ایران

2 فارغ‌التحصیل کارشناسی، دانشکده فنی و مهندسی، دانشگاه دامغان، دامغان، ایران

چکیده

 
جابه‌جایی طبیعی دوبعدی جریان لایه‌ای تراکم ناپذیر در داخل یک حفرۀ ⅂ شکل با وجود مانع گرم مستطیلی روی دیواره‌ی بالایی، با روش شبکه بولتزمن بررسی شده است. مطالعه‌ی حاضر برای نسبت‌های ابعادی مختلف و حالت‌های گوناگون قرارگیری مانع روی دیواره‌ی بالایی در اعداد رایلی مختلف انجام شده است. آب به عنوان سیال عامل در نظر گرفته شده است. رفتار هیدرودینامیکی و گرمایی سیال در حضور مانع گرم در قالب منحنی‌های جریان، منحنی‌های هم‌دما و عدد ناسلت متوسط بررسی شده است. نتایج به‌دست‌آمده بر پایه‌ی این شبیه‌سازی نشان می‌دهد که مانع مستطیلی به ‌طور قابل‌توجهی بر رفتار جریان سیال و انتقال گرمای داخل حفره‌ی ⅂ شکل تأثیر می‌گذارد. عدد ناسلت متوسط نیز با افزایش عدد رایلی و افزایش نسبت ارتفاع مانع، افزایش می‌یابد. با تحلیل نمودارها و شکل‌های به دست آمده، در عدد رایلی 106 و نسبت ارتفاع مانع برابر با 15/0، بیشترین آهنگ انتقال گرما رخ می‌دهد. همچنین با بررسی حالت‌های مختلف قرارگیری مانع در حفره، برای داشتن بیشینه‌ی آهنگ انتقال، بهترین موقعیت 4/0Sx= مشاهده گردید. نتایج این تحقیق جهت طراحی حالت بهینه قرارگیری قطعات الکترونیکی در حفره‌ها مفید می‌باشد.

کلیدواژه‌ها

موضوعات


[1] Azimifar A., Payan S., Optimization of characteristics of an array of thin fins using PSO algorithm in confined cavities heated from a side with free convection. Applied Thermal Engineering, 2016. http://dx.doi.org/10.1016/j.applthermaleng.2016.08.012
[2] Nazari M., Kayhani M. H., Mohebbi R., Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. International Journal of Modern Physics C, 24(09): 1350060, 2013.
[3] Nazari M., Mohebbi R., Kayhani M. H., Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: Lattice Boltzmann simulation. Journal of non-Newtonian fluid mechanics, , 204: pp.38-49, 2014.
[4] Mohebbi R., Nazari M., Kayhani M. H., Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. Journal of Applied Mechanics and Technical Physics, 57(1): pp. 55-68, 2016.
[5] Mohebbi R., Heidari H., Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. International Journal of Modern Physics C, 28(03): 1750042, 2017.
[6] Mohebbi R., Izadi M., Chamkha A. J., Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Physics of Fluids, 2017, 29: 122009.
[7] Mohebbi R., Lakzayi H., Sidik N. A. C., et al., Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. International Journal of Heat and Mass Transfer, 117: pp. 425-435, 2018.
[8] Mohebbi R., Rashidi M. M., Izadi M., et al., Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 117: pp.1291-1303, 2018.
[9] محمدی پ.، مطالعه عددی انتقال گرمای جابه‌جایی طبیعی در یک حفره مربعی باز حاوی نانو سیال با استفاده از روش شبکه بولتزمن. پایان‌نامه کارشناسی ارشد، دانشگاه کاشان، 1392.
[10] Fattahi E., Farhadi M., Sedighi K. and Nemati H., Lattice Boltzmann Simulation of Natural Convection Heat Transfer in Nanofluids. International Journal of Thermal Sciences, 52, pp. 137-144, 2012.
[11] Nemati H., Farhadi M., Sedighi K. and Fattahi E., Lattice Boltzmann Simulation of Nanofluid in Lid-Driven Cavity. International Communication in Heat and Mass Transfer, 37, pp. 1528-1534, 2010.
[12] Abu-Nadaa E. and Chamkhac A. J., Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled with a Nanofluid. European Journal of Mechanics B/Fluids, 29, pp.472-482, 2010.
[13] Kefayati G. H. R., Hosseinizaeh H. F., Gorji M., Sajjadi H., Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, Vol. 38, pp.798-805, 2011.
[14] Abdallaoui M El., Hasnaoui M., Amahmid A., Numerical simulation of natural convection between a decentered triangular heating cylinder and a square outer cylinder filled with a pure fluid or a nanofluid using the lattice Boltzmann method. Powder Tech, , 277: pp.193–205, 2015.
[15] Mohebbi R., Rashidi M. M., Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. Journal of the Taiwan Institute of Chemical Engineers, 72: pp.70-84, 2017.
[16] Peng Y., Shu C. and Chew Y.T., Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows. Physical Review E, 68, 026701, 2003.
[17] He X.Y., Chen S.Y. and Doolen G. D., A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit.  J. Computational Physics, Vol. 146, No. 1, pp.  282–300,1998.
[18] Zou, Q.S. and He X.Y., On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model. Physics of Fluids, 1997, Vol. 9, No. 6, pp. 1591–1598.
[19] Inamuro T., Yoshino M. and Ogino F., A Non-Slip Boundary Condition for Lattice Boltzmann Simulations. Physics of Fluids, Vol. 7, No. 12, pp. 2928–2930, 1995.
[20] Mohammad A., Lattice Boltzmann Method. Springer, 2011.
[21] Mliki B., Abbassi M. A., Guedri K., Omri A., Lattice Boltzmann simulation of natural convection in an L-shaped enclosure in the presence of nanofluid. Engineering Science and Technology, an International Journal, 2015 Sep 1;18(3):503-11.
[22] Izadi M., Mohebbi R., Karimi D., Sheremet M. A., Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT-Fe ⁠3 O ⁠4 /water hybrid nanofluids using LBM. Chemical Engineering & Processing: Process Intensification, DOI:10.1016/j.cep.2018.01.004, 2018.