[1] Wang W.and Soper S. A., Bio-MEMS : technologies and applications. CRC/Taylor & Francis, Boca Raton, 2007.
[2] Lee C. Y., Lee G. B., Lin J. L., Huang F. C.and Liao C. S., Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. Journal of Micromechanics and Microengineering, vol. 15,No. 6, pp. 1215-1223, 2005.
[3] Suh Y. K.and Kang S., A Review on Mixing in Microfluidics. Micromachines, vol. 1,No. 3, pp. 82-111, 2010.
[4] Bera S.and Bhattacharyya S., On mixed electroosmotic-pressure driven flow and mass transport in microchannels. International Journal of Engineering Science, vol. 62,pp. 165-176, 2013.
[5] Bhattacharyya S.and Bera S., Combined electroosmosis-pressure driven flow and mixing in a microchannel with surface heterogeneity. Applied Mathematical Modelling, vol. 39,No. 15, pp. 4337-4350, 2015.
[6] Yang J. T., Fang W. F.and Tung K. Y., Fluids mixing in devices with connected-groove channels. Chemical Engineering Science, vol. 63,No. 7, pp. 1871-1881, 2008.
[7] Biddiss E., Erickson D.and Li D., Heterogeneous surface charge enhanced micromixing for electrokinetic flows. Anal Chem, vol. 76,No. 11, pp. 3208-3213, 2004.
[8] Ebrahimi S., Hasanzadeh-Barforoushi A., Nejat A.and Kowsary F., Numerical study of mixing and heat transfer in mixed electroosmotic/pressure driven flow through T-shaped microchannels. International Journal of Heat and Mass Transfer, vol. 75,pp. 565-580, 2014.
[9] Cho C. C., Chen C. L.and Chen C. o. K., Mixing enhancement of electrokinetically-driven non-Newtonian fluids in microchannel with patterned blocks. Chemical Engineering Journal, vol. 191,pp. 132-140, 2012.
[10] Isa M. H. M., Zhao X.and Yoshino H., Preliminary study of passive cooling strategy using a combination of PCM and copper foam to increase thermal heat storage in building facade. Sustainability, vol. 2,No. 8, pp. 2365-2381, 2010.
[11] Li J.and Kleinstreuer C., Microfluidics analysis of nanoparticle mixing in a microchannel system. Microfluidics and Nanofluidics, vol. 6,No. 5, pp. 661-668, 2008.
[12] Zhao G. P., Jian Y. J.and Li F. Q., Electromagnetohydrodynamic Flow and Heat Transfer of Nanofluid in a Parallel Plate Microchannel. Journal of Mechanics, vol. 33,No. 01, pp. 115-124, 2016.
[13] Liu Y., Shah S.and Tan J., Computational Modeling of Nanoparticle Targeted Drug Delivery. Reviews in Nanoscience and Nanotechnology, vol. 1,No. 1, pp. 66-83, 2012.
[14] Xu Z., Wang C., Sheng N., Hu G., Zhou Z.and Fang H., Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field. J Chem Phys, vol. 144,No. 1, p. 014302, 2016.
[15] Brasseur G.and Jacob D. J., Modeling of atmospheric chemistry. Cambridge University Press, Cambridge, 2017.
[16] Deen W. M., Analysis of transport phenomena. Oxford University Press, New York, 1998.
[17] Dehghan Manshadi M. K., Khojasteh D., Mohammadi M.and Kamali R., Electroosmotic micropump for lab-on-a-chip biomedical applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 29,No. 5, pp. 845-858, 2016.
[18] Farazdaghi H.and Harris P., Plant competition and crop yield. Nature, vol. 217,No. 5125, p. 289, 1968.
[19] Ferrouillat S., Bontemps A., Ribeiro J.-P., Gruss J.-A.and Soriano O., Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow, vol. 32,No. 2, pp. 424-439, 2011.
[20] Chen Y. j., Wang P. y.and Liu Z. h., Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. International Journal of Heat and Mass Transfer, vol. 56,No. 1-2, pp. 59-68, 2013.
[21] Karmel P. R., Colef G. D.and Camisa R. L., Introduction to electromagnetic and microwave engineering. Wiley, New York, 1998.
[22] Chakraborty S.and Roy S., Thermally developing electroosmotic transport of nanofluids in microchannels. Microfluidics and Nanofluidics, vol. 4,No. 6, pp. 501-511, 2007.
[23] Erickson D., Electroosmotic Flow (DC). Li D., editor. Springer US, Boston, MA, 2008.
[24] Shamloo A., Mirzakhanloo M.and Dabirzadeh M. R., Numerical Simulation for efficient mixing of Newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer. Chemical Engineering and Processing: Process Intensification, vol. 107,pp. 11-20, 2016.
[25] Afonso A. M., Ferrás L. L., Nóbrega J. M., Alves M. A.and Pinho F. T., Pressure-driven electrokinetic slip flows of viscoelastic fluids in hydrophobic microchannels. Microfluidics and Nanofluidics, vol. 16,No. 6, pp. 1131-1142, 2013.
[26] Wu Z., Nguyen N.-T.and Huang X., Nonlinear diffusive mixing in microchannels: theory and experiments. Journal of Micromechanics and Microengineering, vol. 14,No. 4, p. 604, 2004.
[27] El-Kareh B., Thermal Oxidation and Nitridation. Springer US, Boston, MA, 1995.