بررسی فنی و اقتصادی استفاده از سیستم هیبرید (تقطیر چندمرحله‌ای + اسمز معکوس) برای شیرین سازی آب دریا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در این مقاله با توجه به کمبود آب در ایران و مصرف بالای برق در حاشیه­ی خلیج‌فارس به بررسی سیستم تولید هم‌زمان برق و آب پرداخته‌شده است. در این مقاله تأمین آب و برق شهرستان بشاگرد و بررسی قیمت تجهیزات و آب شیرین تولیدشده با استفاده از سیستم تقطیر چندمرحله‌ای+ اسمز معکوس بررسی‌شده است. با توجه به آب خلیج‌فارس با غلظتppm45000، تولید آب موردنیاز تقریباًm3/day10000 طراحی شد.در این طراحی، ریکاوری سیستم اسمز معکوس و قیمت تمام‌شده برای کل مجموعه به ترتیب برابر 42% و 3/2 دلار بر مترمکعب محاسبه شد. استفاده از سیستم تقطیر چندمرحله‌ای با توجه به دبی بخار خروجی از بویلر بازیاب به‌تنهایی نمی‌توانست دبی آب شیرین موردنیاز را تأمین نماید ولی با استفاده از سیستم هیبریدی توربین گاز+ تقطیر چندمرحله‌ای+ اسمز معکوس برق و آب شیرین موردنیاز این شهرستان، تأمین گردید. استفاده از سیستم هیبریدی موجب افزایش هزینه‌ها نیز شد که با استفاده از توربین گاز با توان بیشتر می‌توان با استفاده از الکتریسیته بیشتر تولیدشده، برای پمپ سیستم اسمز معکوس استفاده نمود و هزینه­ها را از 8/2 به 3/2 دلار به ازای هر مترمکعب کاهش داد.

کلیدواژه‌ها

موضوعات


[1]  For the first time in the country, projects simultaneous production of electricity and water were used Qeshm Mapna,http://www.mapnagroup.com/fa/2836.
[2]  Shenvi S.  S., Isloor A.  M., Ismail A. F., A review on RO membrane technology: Developments and challenges.Desalination , Vol. 368, pp. 1-214, 2015.
[1]   
[2]   
[3]  Lisbona P., Uche J., and Serra L., High-temperature fuel cells for fresh water productio.Desalination, Vol. 182, No. 1-3, pp. 471-482, 2005.
[4] Kamali R. K., Abbassi A., Sadough Vanini S. A., and Saffar Avval M., Thermodynamic design and parametric study of MED-TVC.Desalination, Vol. 222,  No. 1-3, pp. 596-604, 2008.
[5] Kamali R. K. and Mohebinia, Experience of design and optimization of multi-effects desalination systems in Iran. Desalination, Vol. 222, No. 1-3, pp. 639-645, 2008.
[6] Skiborowski M. M., hamdi A., Kraemer K., and Marquardt, Model-based structural optimization of seawater desalination plants.Desalination, Vol. 292, pp. 30–44, 2012.
[7] Najafi B., Shirazi A., Aminyavari M., Rinaldi F., and Taylor R. A., Exergetic,economic and environmental analyses and multi objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSFdesalination system.Desalination, Vol. 334, No. 1, pp. 46-59, 2014.
[8]Esfahani J. and Yoo C. K., Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers.Energy, Vol. 59, pp. 340-355, 2013.
[9] Sayyaadi H., Saffari A., and Mahmoodian A., Various approaches in optimization of multi effects distillation desalination systems using a hybrid meta-heuristic optimization tool.Desalination, Vol. 254, No. 1-3, pp. 138-148, 2010.
[10] Khoshgoftar Manesh M. H., Ghalami H., M., and Amidpour M. Hamedi H., Optimal coupling of site utility steam network with MED-RO desalination through total site analysis and exergoeconomic optimization.Desalination, Vol. 316, pp. 42-52, 2013.
 [11] Gomar Z., Heidary H., Davoudi M., Techno-Economics Study to Select Optimum Desalination Plant for Asalouyeh Combined Cycle Power Plant in Iran.World Academy of Science, Engineering and Technology, Vol. 75, No. 3, 2011.
[12] E1-Nashar A., Cogeneration for power and desalination -state of the art review.Desalination, Vol. 134, No. 1-3, pp. 7-28, 2001.
[13] El Saie M. H. A., El Saie Y., and El Gabry H., Techno-economic study for combined cycle power generation with desalination plants at Sharm El Sheikh.Desalination, Vol. 153, No. 1-3, pp. 191-198, 2002.
[14] Mokhtari H., Ahmadisedigh H., Ebrahimi I., Comparative 4E analysis for solar desalinated water production by utilizing organic fluid and water.Desalination, Vol. 377, pp. 108-198, 2016.
[15] Mokhtari H., Bidi M., Gholinejad M., Thermoeconomic Analysis and Multiobjective Optimization of a Solar Desalination Plant.Journal of Solar Energy, 2014.
[16] Esmaieli A., Keshavarz M. P., Shakib S. E., Amidpour M., Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generator.Energy Res,Vol. 37, No. 12, pp.  1440-1452, 2012.
[17]Mokhtari H., Esmaieli A., Hajabdollahi H., Thermo‐Economic Analysis and Multiobjective Optimization of Dual Pressure Combined Cycle Power Plant with Supplementary Firing.Heat Transfer—Asian Research, 2014.
[18] Hosseini et al, Cost optimization of a combined power and water desalination plant with exergetic, environment and reliability consideration.Desalination, Vol. 285, pp. 123–130, 2012.
[19] Ahmadi P., Dincer I., Rosen M. A. , Exergy exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants.Energy, Vol. 36, No. 10, pp. 5886–5898, 2011.
[20] Lefebvre A., Ballal Dilip R., Gas turbine combustion alternative fuel and emissions. Third Edittion, Taylor & Francis,UK, 2010.
[21] Bejan A., Moran M. J., Thermal design and optimization. John Wiley & Sons, 1996.
[22] Kaviri A. G.,Jaafar M. N. M., Lazim T. M., Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm.Energy Convers Management, Vol. 58, pp. 94-103,  2012.
[23] Behbahani-nia A., Bagheri M., Bahrampoury R., Optimization of fire tube heat recovery steam generators for cogeneration plants through genetic algorithm.Applied Thermal Engineering, Vol. 30, No. 16, pp. 2378-2385, 2010.
[24] Ganapathy V., Industrial boilers and heat recovery steam generators design, applications, andcalculations. Marcel Dekker, Inc.,New York, 2003.
[25]Janghorban Esfahani I., Ataei A., Shetty K. V., Oh T. S., Park J. H., Yoo C. K., Modeling and genetic algorithm-based multi-objective optimization of the METVC desalination system.Desalination, Vol. 292, pp. 87-104, 2012.
[27]Du Y., Xie L., Liu J., Wang Y., Xu Y., and Wang S., Multi-objective optimization of reverse osmosis networks by lexicographic optimization and augmented epsilon constraint method.Desalination, Vol. 333, No. 1,pp. 66-81, 2014.
[28]Hosseini M., Dincer I., Ahmadi P., Barzegar Avval H., Ziaasharhagh M., Thermodynamic modelling of an integrated solid oxide fuel celland micro gas turbine system for desalination purposes. Energy Res, Vol. 37, No. 5, pp. 426- 434, 2011.