[1] Habekost A., Experimental Investigations of Alkaline Silver-zinc and Copper-zinc Batteries, World Journal of Chemical Education, World Journal of Chemical Education Vol. 4, No. 1, pp 4-12, 2016.
[2] Marino M., Misuri L., Carati A. and Brogioli D., Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference, Energies 2014, Vol. 7, pp. 3664-3683, 2014.
[3]
Ubelhor R.,
Ellison D.,
Pierce C., Enhanced thermal property measurement of a silver zinc battery cell using isothermal calorimetry, Thermochimica Acta, Vol. 606, pp. 77-83, 2015.
[4] Salkind A.J., Karpinski A.P., Serenyi J.R., Secondary batteries – zinc systems, Zinc-Silver, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Vol. 14, pp. 513-523, 2009.
[5] Senthilkumar M., Satyavani T.V.S.L., Srinivas Kumar A., Effect of temperature and charge stand on electrochemical performance of silver oxide–zinc cell, Journal of Energy Storage, Volume 6, pp. 50-58, 2016.
[6] Venkatraman M. and Van Zee J.W., A model for the silver-zinc battery during high rates of discharge. J. Power Sources, Vol. 166, No. 2, pp. 537-548, 2007.
[7] Kwak W.J., Jung H.G., Lee S.H., Park J.B., Aurbach D., Suna Y.K., Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries, J. Power Sources, Volume 311, pp. 49-56, 2016.
[8] Braam K.T., Volkman S.K. and Subramanian V., Characterization and optimization of a printed, primary silver–zinc battery, Journal of Power Sources, Vol. 199, No. 1, pp. 367-372, 2012.
[9] Yan Ch., Wang X., Cui M., Wang J., Kang W., Foo C. Y., Lee P.S., Stretchable Silver-Zinc Batteries Based on Embedded Nanowire Elastic Conductors, Advanced Energy Materials, Vol. 4, No. 5, pp. 54-62 , 2014.
[10] Smith D.F. and Brown C., Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries, Journal of Power Sources, Vol. 96, No. 1, pp. 121-127, 2001.
[11] Karpinski A.P., Russell S.J., Serenyi J.R. and Murphy J.P., "Silver based batteries for high power applications, Vol. 91, No. 1, pp. 77-82, 2000.
[12] Ma Y., Zhou X., Liao Y., Yi Y., Wu H., Wang Z., Huang W., Localised corrosion in AA 2099-T83 aluminium-lithium alloy: The role of grain orientation, Corrosion Science, Vol. 107, pp. 41-48, 2016.
[13] ASTM B962-14, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International, West Conshohocken, PA, pp. 1-7, 2014.
[14] Haghi A.K., Oluwafemi O.S., Jose J.P., Maria H.J., Composites and Nanocomposites, Advances in Materials Science, Vol. 4, pp. 119-147, 2013.
[15] Keller K.A., Jefferson G., Kerans R.J., Handbook of Ceramic Composites, Kluwer Academic Publishers, Vol. 4, pp. 377-421, 2005.
[16] Li Y.H., Rao G.B., Rong L.JI., Li Y.Y. and Ke W., Effect of pores on corrosion characteristics of porous NiTi alloy in simulated body fluid, Materials Science and Engineering: A, Vol. 363, No. 1-2, pp. 356-359, 2003.
]17[ کاظمی ف.، ممبینی س.، معظمی ه.، بررسی تأثیر فشار پرس بر میزان تخلخل و مقاومت پلاریزاسیون سرامیکهای زیرکونیوم - کربن مورد استفاده در پیلهای سوختی، شانزدهمین کنگره ملی خوردگی، تهران، آذر 1394.
[18] Roberge P.A., Handbook of Corrosion Engineering, 2th Edition, pp. 751 - 643, 2012.
[19] Cao F., Shi Z., Song G.L., Liu M., Dargusch M.S., Atrens A., Influence of hot rolling on the corrosion behavior of several Mg–X alloys, Corrosion Science, Vol. 90, pp. 176-191, 2015.