[1] Naik N. K., and Shrirao P., Composite structures under ballistic impact, Composite Structures, Vol. 55, PP 579_590, 2006.
[2] Naik N. K., Shrirao P. and Redd B., Ballistic Impact Behavior of Woven Fabric Composites Parametric Studies, Materials Science and Engineering, vol.78, PP 104_116, 2005.
[3] Egres R. G., Kirkwood K. M., Kirkwood J. E. and Wagner N. J., Advanced Body Armor Utilizing Shear Thickening Fluids, In 23rd Army Science Conference, Orlando, United States of America, 3 December 2002.
[4] Van Der Werff H., Modeling of ballistic impact on fiber composite, S.L.
MSH Science,
Vol.2, PP 1045-1055, 2011.
[5] Duana Y., Keefeb M., Bogettic T. A. and Cheesemanc B.A., Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric, Impact Engineering, Vol. 42, PP 996_1012, 2005.
[6] Tarig A., Vijay H., Rangari K. and Jeelani S., Synthesis processing and characterization of shear thickening fluid (STF) impregnated fabric composites ,Materials Science and Engineering Vol. 41, PP 76_84, 2010.
[7] Kordani N. and Vanini A. S., Different method to make laminates by shear thickening fluid, Science Engineering Composite Material, Vol. 45, PP 97_106, 2013.
[8] Kordani N. and Vanini A. S., Optimizing the ethanol content of shear thickening fluid fabric composites under Impact loading, Impact Engineering, Vol.78, PP 45_55, 2013.
[12] Horsfall I., Bishop W. and Cowan D., the Effect of Ceramic Type on The Performance Of Ceramic- Faced Metallic Armor, Battlefield Technology, Vol. 6, PP 234_246, 2003.
[13] Cox R. G., The deformation of a drop in a general time-dependent fluid flow,
Fluid Mechanics, Volume 37, pp 601- 623, 2006.
[14] Galindo-Rosales, Francisco J., Hernández R, Francisco J., Velázquez N. and José F., Shear-thickening behavior of Aerosol R816 nanoparticles suspensions in polar organic liquids Rheological, Journal of Impact Engineering, Vol.89, PP 699_708, 2009.
[15] Nairn A. J., Matrix Micro cracking in Composites, Polymer Matrix Composites, Vol. 13, PP 189_201, 2000.
[16] Galindo F. J., Rosalesa F. J., Hernandez R. and Sevilla R., An apparent viscosity function for shear thickening fluid, Non-Newtonian Fluid Mechanic, Vol.53, PP 321_325, 2011.
[17] Youngs L., Wetzel D. L. and Wagner N. J., The Ballistic Impact Characteristics of Kevlar woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid, Materials Science, Vol.88, PP 38_49, 2003.
[18] Rao M.P., Duan Y., Keefe M., Powers B. and Bogett T., Modeling the effects of yarn material properties and frictional the ballistic impact of a plain-weave fabric Composite Structures, Impact Engineering, Vol.76, PP 701_715, 2001.
[20] Rao M., Nilakantan G. and Keefe B. M., and Bogetti T. A., Global/Local Modeling of Ballistic Impact onto Woven Fabrics, Composite Materials, Vol. 96, PP 430_ 445, 2009.
[22] Eric D., Wetzel Y. S., Egres R. G., Kirkwood K. M. and Wagner N. J., the Effect of Rheological Parameters on the Ballistic Properties of Shear Thickening Fluid (STF)–Kevlar Composites, Uniforms, Vol. 66, PP13-27, 2004.
[23] Jonathan J., Stickel A. and Powell R., Fluid Mechanics and Rheology of Dense Suspensions, biomechanics, Vol. 37, PP 129_149, 2005.
[24]
Weinbaum S.,
Cowin S. C. and Zeng Y., A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses, Biomechanics, Vol.25, PP 21_35, 1998.
[25] Lee Y., Wetzel Y. S. and Wagner N. J., The Ballistic Impact Characteristics of Kevlar® Woven Fabrics Impregnated with a Colloidal Shear Thickening Fluid, Materials Science, Vol. 38, PP 2825_2833, 2003.
[26]
Cross M., Rheology of non-Newtonian fluids: A new flow equation for pseudo plastic systems,
Colloid Science,
Vol. 20, PP 417-437, 2001.